Description
Chimeric antigen receptor (CAR) T-cell therapies present transformative potentials for progressive and refractory cancer treatment. However, therapy-associated neuronal toxicities, cytokine release syndromes, relapse rates, and the complex responses of patients and medical management have increased the cost of patient care.

Chimeric antigen receptor (CAR) T-cell therapies present transformative potentials for progressive and refractory cancer treatment. However, therapy-associated neuronal toxicities, cytokine release syndromes, relapse rates, and the complex responses of patients and medical management have increased the cost of patient care. Prompt point-of-care (POC) quantification of circulating CAR T-cells and associated cytokines could enhance safety, simplify patients' management, and decrease patient care costs. While effective, existing standard detection methods, such as Enzyme-Linked Immunosorbent Assay (ELISA), quantitative Polymerase Chain Reaction(qPCR), and Flow cytometry, are not conducive to quick POC testing due to their complexity and expense. This research introduces a centrifuge-free Rapid Optical Imaging (ROI)-based platform to quantify CAR T-cells and therapy-related cytokine (Interleukin-6) from a single drop of whole blood. Through machine learning, label-free ROI-based CAR T-cell detection has been improved for accuracy compared with fluorescent staining results, and the morphological characteristics of CAR-T cells have been applied to attribute for differentiation and reduce false positives. This multi-layered microfluidic chip integrates cell and cytokines separation, collection, and detection steps, reducing the need for centrifugation or staining procedures. The microfluidic channel system separates white blood cells from whole blood after red blood cell agglutination and membrane filtration. The non-agglutinated samples are then extracted into a subchannel with a functionalized sensor surface for CAR-T-specific detection. Calibration curves were established using blood samples spiked with varying CAR-T cell concentrations. Another subchannel, featuring dual-layer membrane filtration, has been designed for cytokine detection using gold nanoparticle-labeled detection antibodies. Cytokine concentrations are digitally measured by tracking the number of gold nanoparticles in designated zones. This platform aims to offer a rapid and cost-efficient prognostic tool for timely assessment of key molecular and cellular biomarkers of CAR-T therapy patients, facilitating timely and evidence-based treatment adjustments.
Reuse Permissions
  • 4.03 MB application/pdf

    Download restricted until 2025-12-01.

    Details

    Title
    • Developing A Rapid Optical Imaging-Based Platform for Point-of-Care Assessment of CAR T-cell Expansion and Therapy-Related Cytokines
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Chemistry

    Machine-readable links