Description

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize plastic packaging, as many have been identified as endocrine disruptors. This study sought to determine exposure to phthalates, bisphenols, and terephthalic acid by quantifying a broad spectrum of these analytes within three bottled water brands at varying temperature exposure levels using the combination of solid phase extraction followed by isotope dilution liquid chromatography-tandem mass spectrometry. Monobenzyl phthalate was detected in two of the three brands after bottles were heated to ~100 °C, ranging from 98 – 107 ng/L, and bisphenol A was detected in one brand at ~100 °C at an average concentration of 748 ± 36 ng/L. Subsequent mass loading calculations demonstrated that bioaccumulation of BPA from Brand C after high levels of temperature exposure well exceeded the tolerable daily intake (TDI). Findings in this study indicate that consumers should not be expected to incur harmful exposures to the target compounds under normal conditions as analytes were not measured in water bottle samples at 25 °C or 60 °C. Further studies should explore a more nuisance approach to heating over long durations, including that of ultraviolet exposure.

Reuse Permissions
  • 275.95 KB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • Quantifying phthalate esters, bisphenols, and terephthalic acid concentrations in common bottled water brands after various levels of temperature exposure
    Contributors
    Date Created
    2022-12
    Resource Type
  • Text
  • Machine-readable links