Description
The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon

The efficiency of the ocean’s biological carbon pump is mediated by fast-sinking particles that quickly settle out of the euphotic zone. These particles are conventionally associated with micro- (> 20 µm) sized diatoms and coccolithophorids, thought to efficiently transport carbon to depth owing to their dense mineral structures, while pico- (< 2 µm) and nanophytoplankton (2-20 µm) are considered to contribute negligibly due to their small size and low sinking speed. Despite burgeoning evidence of their export, the mechanisms behind it remain poorly understood. The objective of this dissertation is to acquire a mechanistic understanding of the contribution of pico- and nanophytoplankton to particle fluxes. I tested the hypotheses that pico- and nanophytoplankton may be exported via the following pathways: 1) physical aggregation due to the production of sticky Transparent Exopolymeric Particles (TEP), mediated by interactions with heterotrophic bacteria, 2) attachment to lithogenic minerals, and 3) repackaging by zooplankton. I found that despite the traditional view of being too small to sink, pico- and nanophytoplankton form aggregates rich in TEP, allowing cells to scavenge lithogenic minerals and thus increase their effective size and density. I discovered that interactions with heterotrophic bacteria were significant in mediating the process of aggregation by influencing the production and/or the composition of the phytoplankton-derived TEP. Bacteria differentially influenced aggregation and TEP production; some species enhanced aggregation without affecting TEP production, and vice-versa. Finally, by determining the microbial composition of sinking particles in an open-ocean site, I found pico- and nanophytoplankton significantly associated with particles sourced from crustaceous zooplankton, suggesting that their export is largely mediated by mesozooplankton. Overall, I show that the hypothesized mechanisms of pico- and nanophytoplankton export are not mutually exclusive, but instead occur subsequently. Given the right conditions for their aggregation in the natural environment, such as interactions with aggregation-enhancing heterotrophic bacteria and/or the presence of lithogenic minerals, their cells and aggregates can escape remineralization within the euphotic zone, and thus be susceptible to grazing by mesozooplankton export within fecal pellets. The results of this dissertation provide a mechanistic framework for the contribution of pico- and nanophytoplankton to ocean particle fluxes.
Reuse Permissions
  • Downloads
    pdf (7.3 MB)

    Details

    Title
    • Elucidating the Mechanisms of Aggregation in Marine Pico- and Nanophytoplankton
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Biology

    Machine-readable links