Description
In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary ellipsoid packing in 3D are briefly discussed and the effects of different geometrical parameters on the final packing fraction are analyzed.
Reuse Permissions
  • Downloads
    pdf (2.3 MB)

    Details

    Title
    • Structural characteristics and applications of hard-particle packings via event-driven molecular dynamics simulations
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2014
      Note type
      thesis
    • Includes bibliographical references (p. 44-45)
      Note type
      bibliography
    • Field of study: Materials science and engineering

    Citation and reuse

    Statement of Responsibility

    by Yaopengxiao Xu

    Machine-readable links