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ABSTRACT 

In this dissertation, several computational results of jammed packings of hard 

particles are presented, including the investigation of disordered hard-non-sphere in 2 

dimensions and hard-ellipsoid packings in 3-dimensions. In the first part, an introduction 

of the dissertation will be provided. In the introduction, a briefly review is for the 

researches and results associated with hard particle packings over last 10 years. In the 

second part of this dissertation, the detailed discussion of the mathematical algorithms 

will be presented to model hard-particle systems, and in particular, an algorithm event –

driven (collision-driven) molecular dynamics (EDMD) is deep studied. This algorithm is 

always employed to generate disordered jammed packings of hard spheres, ellipsoid, 

superdisks and superballs and all of the packings in our paper. In the third part, to 

generating maximally random jammed (MRJ) packings of binary superdisks in two-

dimensions is achieved by EDMD algorithm and the fundamental characteristics of the 

packing structure has been analyzed. In these MRJ packings, other parameters of packing 

system are considered for the effect of structure characteristics (i.e., size ration, number 

ratio etc.). Then, through analysis of the local packing structure, a relative accurate local 

theoretical prediction method is proposed and the verification is provided subsequently. 

In the fourth part of this dissertation, the several different binary ellipsoids MRJ packing 

in 3-dimensions are produced as extension. By using these packing structures, it is able to 

be systematically discussed the characteristics of the binary ellipsoids and the structures 

will be applied in the subsequent sintering simulation as initial configurations. In the 
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conclusion part, a concluding is remarked and several future directions of the research of 

packing are provided.  
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CHAPTER 1 INTRODUCTION 

Granular materials, defined as large conglomerations of discrete macroscopic 

particles, are widely distributed in our nature, such as nuts, rock, coal, sandy soil, rice and 

gravel. They are one of the indispensable elements for our environment and linked with 

our daily lives. Also, granular materials are very commercially important in applications 

as diverse as soil in agriculture, concrete in the civil engineering, the medicinal powder in 

the pharmaceutical industry and the composite cathode material powder in solid oxide 

fuel cell of energy production. As material scientist Patrick Richard said, “Granular 

materials are ubiquitous in nature and are the second-most manipulated material in 

industry (the first one is water)”[3]. 

Packing issues, such as how densely given particles can fill in the space, have 

been perennial studied as an entry point for understanding the characteristics of the 

granular material. In addition, packing problems are very useful in the analysis of 

heterogeneous materials, colloids and granular media[2]. They even appear in numerous 

biological contexts, spanning a wide spectrum of length scales as well, which includes 

macromolecules crowded condition within living cells, the packing of cells to form tissue 

and the protein structure[2]. Thus, research into packing is directly applicable and even 

can be dated back to several centuries ago.  In 1611, Kepler proposed a question: what is 

the densest way to stack equal-sized balls? His conjecture was the face-center cubic (fcc) 

arrangement[2]. Then in 1831, Gauss first verified the fcc packing is the densest Bravais 

lattice packing[4]. Although the packing problems are easy to be proposed, they are very 

difficult to be solved rigorously. It was not until 2005 that Hales proved the general 
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Kepler’s conjecture that there isn’t any other arrangement of spheres in three-dimensional 

Euclidean space whose coverage area can exceed that of the fcc packing[5]. Even the 

two-dimensional simpler analog of Kepler’s problem, the densest packing of identical 

circles in a plane, proved only 70 years ago[6][7]. Hence, packing problems arouse more 

and more interest and has been a source of fascination in materials science, physics and 

other areas.  

Investigation of the characteristics of dense particle packing, as a way of packing 

analysis, can not only help us understand the symmetry, structure and macroscopic 

physical properties of condensed-matter phases, liquids, glasses and crystals, but also 

bring us a good and basic insight into the structure properties of granular materials and 

other like-particle systems[2]. For the packing problems, most studies of the densest 

packings in two dimensions and three dimensions focused on circular or spherical shapes. 

It was Torquato who first well defined the random close packing (RCP) and introduced a 

new concept of maximally random jammed (MRJ) state, which is more precise and break 

the impasse that the original picture of RCP cannot be made mathematically precise with 

the support of conclusion via a molecular dynamics study of hard spheres[8]. Donev et.al 

then discussed the densest packing fraction of several different basic packings, such as 

hard circular particles, hard sphere monodisperse and binary-disperse system[9]. Later, 

the packing faction and other characteristics of order and disordered ellipse and ellipsoids 

packing in mono and binary system had been studied by Donev[10][11][12]. However, it 

is only more recently that non-circular and non-spherical shapes (e.g., superdisks) have 

been investigated in different Euclidean space R
d
 by introduced deformation parameter. 
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Yang et.al investigated many essential characteristics of optimal and maximally random 

jammed packing of superballs and superdisks[1][13][14]. 

In Refs. [1][14], they showed the dense and maximally dense packing of 

superballs, which is a family of nonspherical particles with versatile shapes. Specially, a 

d-dimensional superball is a centrally symmetric body in R
d
 occupying the region  

|𝑥1|2𝑝 + |𝑥2|2𝑝 + ⋯ + |𝑥𝑑|2𝑝 ≤ 1, 

Where 𝑥𝑖  (i = 1,…,d) are Cartesian coordinates and p  ≥ 0 is the deformation 

parameter, which indicates to what extent the particle shape has deformed from that of d-

dimensional sphere (p=1). Thus, the superdisk and superball are the cases for two-

dimensional (d=2) and three dimensional (d=3). The geometric shapes are shown in 

Figure 1 and Figure 2 [13]. They shows convex particles (p ≥ 0.5) with both cubic-like 

and octahedral-like shapes as well as concave particles (0 ≤ p ≤ 0.5) with octahedral-like 

shapes. 

 

Figure 1:  Superdisks with Different Values of Deformation Parameter p[15] 
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Figure 2: Superballs with Different Values of Deformation Parameter p[15] 

It is necessary to mention several definitions in packing studies. Packing is 

defined as a large conglomeration of non-overlapping (i.e., hard) particles in either a 

finite-sized container or in d-dimensional Euclidean space R
d
. Packing fraction ɸ , one of 

important parameters used for characterizing the packing structure, is the fraction of 

space covered by the hard particles. “Jammed” packings are defined as those particle 

configurations in which each particle is in contact with its nearest neighbors in a such 

way that possess mechanical stability[2]. In general, for a given particle shape, the 

associated packings have a diversity of densities and degrees of order. The maximally 

jammed packing of equal-size particles, usually achieved by ordered arrangements 

depending on the particle symmetry, are the thermodynamic stable phases of the 

associated shapes in the infinite-pressure limit and also determine the high-density 

equilibrium phase behavior of such hard-particle systems. On the other hand, the 

maximally random jammed (MRJ) packings can be viewed as prototypical glasses in that 

they are maximally disordered while simultaneously being mechanically rigid. Roughly 

speaking, MRJ packings can be obtained by compressing liquid configurations at the 

largest possible rate to a strictly jammed (i.e., mechanically stable) configuration.  
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A number of schemes can be used to simulate the densest packing of hard 

particles. Based on the molecular dynamics simulation in which the motions and the 

interactions of each particle have been simulated as a function of time, there are two main 

approaches – time-driven and event-driven molecular dynamics. Time-driven molecular 

dynamics (TDMD) is more suitable for soft particles and more efficient in the dense 

system. In this approach, time changes in small steps and the equations of motion are 

integrated[15]. However, an alternative rigorous algorithm is event-driven molecular 

dynamics (EDMD), based on a rather general discrete model. In EDMD, the advancing 

time in TDMD is replaced by the binary collision event and it has higher efficiency in 

dilute system because the simulation is advanced to the time of the collision event with 

the smallest scheduled time (the impending event) and gets rid of the useless steps 

without any collision. Thus, in the densest packing research, the EDMD has been 

efficiently implemented to simulate the evolution of system from dilute to jammed. 

In this paper, we generate both packings of binary superdisks in two-dimensions 

and bi-disperse ellipsoids in three-dimensions that represent the MRJ state of these 

particles by using the aforementioned approach EDMD and investigate their 

characteristics. Since one cannot enumerate all possible packing even for a small number 

of particles, it is desirable to devise a small set of parameters that can characterize 

packings well. For example, size ratio is one of the common parameter in binary system 

and deformation parameter p is always used for investigation of non-sphere particle 

system. Thus, we picked up several common and important parameters, such as size ratio, 

number ratio, aspect ratio and deformation parameter, for the investigation in the packing 
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system. According to several related research and papers, for superdisks, the relation 

between deformation parameter p and packing fraction had been intensively studied 

despite the simplicity the exhibit rich packing characteristics. However, the effect of size 

ratio, number ratio and packing faction hadn’t been systematically investigated in binary 

superdisk system. Furthermore, we proposed a local organization principle for the 

prediction of the global packing fraction in a system[16]. We find that the distribution of 

local contact angle possesses assumes a universal Gaussian form associated with the 

minimal curvature of the particle surface. This principle allows us to devise formulas that 

provide accurate estimates of the MRJ packing fraction, which is subsequently verified 

by simulation results.  

For research of the superdisks in R
2
, it really helps that people understand the 

features and characteristics of this type of particles packing and it is easier to conclude 

under the simple dimension condition. In three-dimension, the effect of characteristics as 

size ratio, number ration and aspect ratio in binary hard ellpsoids packings is still a very 

interesting area. On the other hand, ellipsoids packing is more practical in the application 

of industry and engineering. For example, in this paper, the three- dimensional packing 

structures are models of granular materials and powder compact for sintering.  
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CHAPTER 2 EVENT-DRIVE MOLECULAR DYNAMICS (EDMD) ALGORITHM 

2.1 MD Introduction 

Original molecular dynamics (MD) approach are very popular in numerical 

simulation and have been implemented to study the characteristics and properties of 

particle packings and granular materials for many years. However, it is not very often to 

be discussed in detail for non-spherical particle packings (i.e., superballs). In this section, 

the details of this method are provided. 

MD method was used to study the basic multiple hard sphere particle system as 

the beginning, which is rich in behavior. Then the approaches were developed and were 

implemented in a soft sphere particles system. In the soft spherical particles system, the 

interactions among particles are other spherically symmetric particles and the continuous 

potential energy between them. For these two different types of system, hard particles 

and soft particles, the algorithms are very different as well and it is necessary to work on 

both sides separately for a given particle system. For example, Newton’s law of motion 

has been used and integration of its ordinary differential equations is needed for the soft 

particles. However, for hard particles, the interaction potential is singular and one only 

needs to find out the binary collision-events between a pair of particles or between a 

particle and hard wall of container instead of integration of ordinary differential 

equations[15]. In other words, we don’t have to take the information of every small time 

step but each discrete collision events which is also a process impetus for hard particle.  
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For hard particles system, although there are two popular approaches for 

simulation, the algorithm that we call “event-driven” molecular dynamics (EDMD), 

advanced by collision event, is preferred because of the distinctive characteristics of this 

system and it is opposed to the time-driven method as we mentioned in which tiny time 

steps is “driving force” and the equations of motion are integrated whenever the time 

changes in the soft particle system. For event-driven algorithms, we are faced with the 

task of scheduling a series of events that are predicted to happen in the future and 

arranging them as a selection of the impending time from small to large order in the event 

list. Subsequently, the simulation moves forward to the time of the impending event with 

the shortest time interval and that event is processed. Then the future event list is updated 

and the identical process is repeated.  

In the MD simulation, event-driven molecular dynamics (EDMD) method was 

first used for the very basic hard circular particles system, and then has been developed 

and improved in different ways, in particular, to increase the efficiency of the approach, 

such as delayed particle updates, the cell method, etc.. However, before the broadly 

applying event-driven simulation approach, most of the non-spherical particles have used 

the time-driven method, which is much easier to apply than the event-driven but inferior 

in both accuracy and efficiency, especially at higher densities. The reason event-driven 

approach had not yet been broadly applied for non-spherical particles is that it is very 

demanding for running a higher accurate EDMD algorithm for diverse particle shapes 

and large enough system[15]. Today, the running requirements of computers have 

already been satisfied, such as faster speeds and suitable implementation involves a 
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significant level of code complexity. Thus, in the following parts, we discuss in detail 

about an advanced event-driven molecular dynamics algorithm (EDMD) for a hard non-

spherical particle system. 

2.2 The Improved EDMD for Non-spherical Particles System 

Several improvements of current EDMD approach have been made by Donev, 

Toqurato and Stillinger[15]. The algorithm is based on classical event-driven method that 

we mentioned above for a spherical particles system. Based on the classical one, we 

introduced several innovations and strengths of the current EDMD related to our 

simulation and results in this paper. The improved EDMD specifically allows different 

symmetric particles by using quaternions to present all of different orientations, unlike 

original hard-particle algorithms which have been restricted to the simple dimension or 

direction. Thus, in three-dimensional space, it is possible to make changes to different 

particle shapes and orientations which are very helpful for the study of different types of 

packing structure.  The components about the shape of the particle are separated from the 

original concepts, so that it is convenient to adapt the algorithm to different geometric 

shapes. In contrast, classical EDMD was used for simple sphere packing system and there 

is no need to consider the effect of each particle shape in system. However, it is more 

complicated for the application of EDMD in a non-spherical system. One of the big 

adjustments is searching method. 
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2.2.1 Searching Method 

In our research, we didn’t concern the deformation of the boundary and the 

boundary condition is the very simple one, periodic boundary condition. Thus, we don’t 

present how to handling the boundary problem in current EDMD. However, the searching 

method is the strength of this EDMD which provide a very higher efficiency for 

searching neighbors of the particle of interest. 

2.2.1.1 Cell Method 

Cell method is a traditional method for neighbor search in particle systems. It 

partition the whole simulation domain into N disjoint cells and each cell has a list of all 

the particles whose centroid are within it. Then, for a given particle i, its neighbors are 

supposed to be in the same cell as i or the neighbor cells. For example, if all the cells that 

we defined are square, each cell has night neighbor cells including itself (under periodic 

boundary condition). For the same reason, the cube cell has 27 neighbor cells including 

itself in three dimensional space. Thus, only those particles belonging to the neighboring 

cells or the central cell are considered as the neighbors of the particle of interest. For the 

shape of the cells, it can be chosen arbitrarily if the following principle can be satisfied: 

the cells can cover the whole simulation domain and it is easily to identify the neighbor 

cells for any given cell. A very important point in the cell method is that the partitioned 

cells in the simulation domain are independent of the motion of the particles so that the 

fixed cells can be relied on to identify the neighbors rigorously even the particles are in 

motion. 
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In EDMD, the event could be the collision event which is between the particle 

and the hard wall of container, or a binary collision. The event could also be a particle 

leaving the original cell. For the binary collision, each particle predicts the collision only 

with the particles in the (first) neighbor cells of its current cell. It is clear that the collision 

event cannot happen with a particle not in the neighbor cell until the particle of interest 

leaves the original cell. If so, there has a transfer for a particle from old cell to the new 

cell. 

2.2.1.2 The Near-neighbor List Method 

The cell method is very efficient for the equal size spherical particles, particularly 

at moderate densities. However, it becomes inefficient for the non-spherical particles, 

whose aspect ratio is far from 1. The reason is that one cannot choose the proper cells 

which is  sufficient small to ensure the average that one particle per cell but relative large 

cells which contain many particles because of the large diameter of the particle. Thus, so 

little computational effort is saved by implementing the cell method. For the same reason, 

it is true even for spheres when large poly-dispersity is present since the cells need to be 

at least sufficient large to enclose sphere in the system, and therefore many small spheres 

will be inside one cell. 

As we mentioned before, the main limitation of the cell method is not flexible 

enough and the shape of the cell cannot be adjusted to the diverse shapes of the particles. 

The main strength is that the partitioning into cells is static and the independent of the 

motion of the particles so that we can save time for update the cell following the motion 
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of particles. However, we have to sacrifice our advantage to correct the drawback for 

more general application. The preliminary idea is that each particle is inside a bounding 

neighborhood, namely, the bounding neighborhood completely surrounds the particle and 

the shape of the neighborhood is in some sense sensitive to the position and the shape of 

the particle of our interest. Then, any two particles with overlapping bounding 

neighborhoods are considered to be neighbors and the collision time or other interaction 

only calculated between such pairs.  Thus, each particle should have a list to store the 

neighbors, so that one can easily find the potential interaction between its neighbors. 

Since the constructing and maintaining of such systems are very expensive in 

computation, sometimes we just choose the same bounding neighborhood shape as the 

original particle but elongate the axis, namely, a large size. Also the near-neighbor lists 

method in event-driven molecular dynamics (EDMD) has the similarity with the cell 

method in some degree. In other words, we just change the neighbor cells to the list of 

bounding neighborhood (see the details in Ref.[15]). Thus, in this paper, we focus on the 

non-spherical particle packings and the NNLs method is what we actually used in the 

simulation. 
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Figure 3：Visualized NNLs method for disks and ellipses. The real particles are darker and the 

bounding neighbors are lighter. For the upper panel binary disks, their neighbors are connected by the lines. 

For the lower panel binary ellipses, their neighbors are connected by the dark triangle, whose vertices are 

the centroids of the two ellipses and the contact point of this pair. (Reference A. Donev, S. Torquato. F. H. 

Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles, I. 

Algorithmic details, Journal of Computational Physics 202 (2005) 737-764)[15]  

2.2.2 Overlap Potential 

The verification of the nonoverlap conditions for particles is an essential part in 

any algorithm which aims at generating the hard particle system. For spheres particles 

motion in EDMD, it is very simple for predicting the time of collision by finding the first 

positive root of a quadratic equation. But it is more complicated for non-spherical 

particles. Essentially, one can find the predicted collision time between two neighbors 

p1(t) and p2(t) if they can find the first non-zero root of the overlap potential ζ (t) = ζ 

[ p1(t), p2(t) ] (see the details in Ref.[17]). 

The overlap potential ζ (p1,p2) is a function associated with information of the 

positions, orientations and shapes of the particles and the value of the function indicate 
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whether the two particles overlap or not. Also, the inequality containing the particle 

information is based on shape function ζ 

ζ (r) = [u(r)]
2
 -1 ≤ 0 , 

where is strictly convex. For this overlap potential, we have a criterion to 

determine the situation of pair of particles, 

 

In our simulation, the collision is defined as the pair of particles is contact and we 

could easier find out the time of impending event (i.e., the collision) by solving the 

overlap potential equation ζ (t).  More details of EDMD algorithm and overlap potential 

in our simulation are provided in Ref. [15][17][18][19]. Interested readers are strongly 

encouraged to read these original papers to learn more about the algorithm.  
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CHAPTER 3 LOCAL PRINCIPLES FOR 2D MAXIMALLY RANDOM JAMMED 

SUPERDISKS PACKING 

Maximally random jammed (MRJ) packings can be viewed as prototypical 

glasses in that they are maximally disordered while simultaneously being mechanically 

rigid. The prediction of the MRJ packing fraction ϕ, among other packing properties, for 

given particle characteristics such as shape and size distribution still poses many 

theoretical challenges.  

In general, for a given particle shape, the associated packings can possess a 

diversity of densities and the degrees of order. The maximally dense packing of 

congruent particles, usually achieved by ordered arrangements depending on the particle 

symmetry, is the thermodynamic stable phases of the associated shapes in the infinite-

pressure limit and also determines the high-density equilibrium phase behavior of such 

hard-particle systems. 

3.1 MRJ Binary Superdisk Packing Generating and Analysis 

Recently, the non-spherical particle system has been intensively studied for 

understanding the structure and properties of several novel particle shapes (i.e., 

superdisks). One of the common characteristic parameter for packing study is the packing 

fraction ϕ, which is the fraction of space covered by the hard particles. For superdisks, 

the relation between deformation parameter p and packing fraction aroused interest from 

dozens of researchers. Also, the effect of size ratio, number ratio and packing fraction are 

worthy to be systematically investigated in binary superdisk system as well. Thus, in this 
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paper, we generated several different binary mixtures superdisk system in two 

dimensions and did not use monodispersed superdisk systems here because they are 

easily crystallized into ordered packings. Here, size ratio and number ratio are the 

variables because we already have abundant data sets for deformation parameter p in 

other papers. For the superdisk, convex ( p>0.5 ) and concave (p<0.5) represents the 

versatile family of square symmetry but only convex is considered since it is more 

general than the others. 

 

          (a)                                                                          (b) 

Figure 4: Typical configurations of MRJ packings of binary superdisks for two different values of 

the deformation parameter p. Figure (a) shows p = 0.85 at the number ratio NR=0.5 and size ratio SR=1.5 

case, figure (b) shows p = 1.5 at the number ratio NR=0.5 and size ratio SR=1.5 case (where number ratio 

is the ratio of number of red (large size) to the number of yellow particles (small size), the size ratio is the 

ratio of the length of semi-major axis of red particle to the yellow particle). 
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3.1.1 The Effect of Size Ratio on the Characteristic of the Structure  

The packings generated by event driven molecular dynamics algorithm as shown 

in Figure 4. 

 

  Figure 5: Size Ratio Versus Packing Fraction for p=0.85 
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Figure 6: Size Ratio Versus Packing Fraction for p=1.5 

The size ratio SR of the two superdisk species is defined as the ratio of the 

diameter of large superdisk over that of a small superdisk. As the   Figure 5 and 

Figure 6 shown above, we choose several different size ratio, 1.5, 2.0, 2.5, 3.0, as our 

horizontal scale. Although we find that statistical fluctuation associated with the packing 

characteristics (i.e., packing fraction) exist because of the 500 particle numbers in the 

small system, the trend of the figures is obvious. In both figures with p = 0.85 and p = 1.5, 

they all reveal that the packing fraction increases monotonically as size ratio moves away 

from the ratio1.5. It is worthy of mentioning that, the increased packing fraction is highly 

dependent on the number ratio. This is discussed after the analysis of the effect of number 

ratio. 
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3.1.2 The Effect of Number Ratio for Characteristic of the Structure  

Number ratio, which is defined as the ratio of the quantity of the large superdisks 

over that of the small superdisks, is another important variable in superdisk binary 

packing.  Because of the same reason mentioned above, the statistical stability is the 

limitation in such small system. However, the effect of the size ratio to the packing 

fraction is still clear and can be analyzed. In this part, the number ratios are 0.25, 0.33, 

0.5, 1.0, 2.0, 3.0, 4.0. These figures reveal that the packing fraction with a fixed size ratio 

decreases monotonically with the increase of number ratio. In other word, the packing 

fraction will get smaller if the number of large size particle increases. It also comforts to 

our guess: a large number ratio of larger size particles will lead to not enough number of 

smaller particle to fill in the spare space.  

 

Figure 7: Number Ratio Versus Packing Fraction for p=0.85 
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Figure 8: Number Ratio versus Packing Fraction for p=1.5 

In general, these two factors, number ratio and size ratio, function together in the 

effect of the packing fraction. As the Figure 7 and Figure 8 shown above, the packing 

fraction doesn’t have much fluctuation with the change of number ratio if the size ratio is 

around 1, since the number ratio is not that important for densities if the size of binary 

particles is almost the same. However, if at the proper large size ratio,  

Different number of each species particle will give us totally different packing 

fraction. As the similar steps of analysis, the packing fraction can be affected intensively 

by the number ratio if the size ratio is higher enough. On the other hand, a relative high 

size ratio and low number ratio can provide us a pretty high packing fraction for the 

binary non-spherical particle packing.   
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3.2 Theoretical Prediction  

Prediction of the packing properties for characteristics of given particle or system, 

such as shape and size distributions, is a long-standing and notoriously difficult problem. 

The determination of the maximal packing fraction ϕmax for non-space-filling particles 

has been a source of fascination for centuries. Recently, general organizing principles and 

conjectures have been proposed that enable one to predict dense packing arrangements 

and thus, lower bounds on ϕmax based on the characteristics of the particle shapes. The 

estimation of the MRJ density ϕMRJ is even more challenging. This can be seen from the 

fact that the prediction of ϕmax only requires the consideration of relatively simple ordered 

arrangements of a small number of particles in a fundamental cell; while for ϕMRJ, it is 

necessary to take into account complex disordered configurations with a large number of 

particles with strong positional and orientational correlations.  

A number of schemes to predict the density of disordered particle packings 

representative of the MRJ state have been developed.  However, one of the defining 

characteristics, i.e., the packing are strictly jammed, were not explicitly incorporated. In 

this paper, we employ a “geometric-structure” approach [16]to devise a local organizing 

principle for MRJ packings of non-spherical particles. Through comprehensive 

computational and analytical studies of the MRJ packings of the family of superdisks 

with a rich spectrum of shapes extrapolating circles to squares in two-dimensions (as 

shown in Figure 9), we find that the distribution of local contact angles (i.e., one made by 

a principal axes of the particle and a line connecting its center to a contact point on the 
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particle surface), after proper re-scaling, possesses a universal Gaussian form for all 

particle shapes. Specifically, the mean value of the distribution corresponds to the contact 

angles associated with the minimal surface curvatures for different particle shapes. We 

show that such a distribution results from the two competing characteristics of the 

packings, i.e., maximal disorder and jamming, and thus, is an intrinsic property of MRJ 

state and applicable to other particle shapes in higher dimensions. This local organizing 

principle allows us to devise a formulism that provides accurate estimates of the MRJ 

packing fraction for a wide range of nonspherical shapes, which are verified by 

simulation results.  

 

Figure 9: The Different Geometric Shape for Different Value of Deformation Parameter p 

3.2.1 Universal Distribution of Contact 

In the binary non-spherical particle system, the size ratio and number ratio are 

very important variables for the final packing fraction. However, we can find out even 

these two factors are the same in our binary superdisk system, the packing fraction still 
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can change with different shape (i.e., deformation parameter p). Actually, deformation 

parameter had been studied a lot for the packing fraction and other properties of a given 

structure[13]. For these kinds of packing, it is supposed to have a principle to predict the 

packing fraction which is worthy to do in industry or engineering.  

We first have the high-quality strictly jammed packing configurations of the 

families of binary superdisks with number ratio α = nL / nS ϵ [4.0,0.5] (where nL and nS 

are respectively the number of large and small particles) and dispersity β = RL/RS ϵ 

[4.0,0.5] (where RL and RS are the corresponding semi-axis of large and small particles, 

respectively) that we generated in 2.1 section by using the EDMD method. A superdisk is 

a region defined via the following equation:  

|
𝑥

𝑎
|2𝑝 + |

𝑦

𝑏
|2𝑝 ≤ 1 , 

where p is the deformation parameter. As p increases or decreases from unity to 

infinity, a superdisk continuously changes its shape from a circle to a square.  

Then, for the local analysis, we pick up two contact particle from our binary 

systems, as shown in the Figure 10 and Figure 11 for p=0.85 and p=1.5, respectively.  
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Figure 10: The Contact Angle for Binary Superdisk When p=0.85 

 

Figure 11:  The Contact Angle for Binary Superdisk When p=1.5 

When p=1, the equation plots as a circle (a=b) or an ellipse (a ≠ b). In our work, 

p changes from 0.85 to 3. For superdisk, because it is four fold symmetric, the curvature 

K of point on superdisk edge serves as a period function of the corresponding angle θ of 

the point. The period is T = π/4.  Figure 12 shows the correlation with a = b = 1 and 
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p=0.9, 1, 1.6. For all p values, the curvature K at each point is equal to the curvature of 

the corresponding symmetry point in the first quadrant, for which its curvature is given 

by 

K(θ) =
ab(2p − 1)(cosθsinθ)(2p+1)/p

(a2(cosθ)
2
psin4θ + b2(sinθ)

2
pcos4θ)

3
2

 

Assume a=b=R, so the reduced curvature can be expressed as 

K∗ = K(θ) ∙ R =
(2p − 1)(cosθsinθ)(2p+1)/p

((cosθ)
2
psin4θ + (sinθ)

2
pcos4θ)

3
2

 

For p<1, the minimal curvature increases with deformation parameter p. For p>1, 

the minimal curvature is zero. When p approaches to 1, K tends to 1/R, the reciprocal of 

the radius of the perfect disk. For p<1, there is no definition of the curvature at θ = nπ/2, 

n = 0, ±1, ±2, … etc. 
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Figure 12: Angle Dependent Curvature of Points on Superdisks with a=b=1. 

When the superdisks packing is well jammed, two contacted superdisks locate at 

two fixed centroid positions and have two rotational angles. Throughout of the analysis, 

θmand θnare the two angles of the contacted point when the contacted superdisks m and 

n are translated to the origin and rotated back, respectively.  
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Figure 13: Contacted Points Expressed by Contacted Angles in Different p Values 

 

Figure 14: Contact Points Expressed by Angles after Angle Transfer 
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For p=1, the distribution is naturally even due to the higher symmetry of circles 

than superdisks. For other cases, the most probability distribution locates at the points 

with the angle of the combinations of the minimal values of curvatures. For p<1, high 

points density appears at (
nπ

4
,

mπ

4
) with m, n = 1, 3, 5, etc. For p>1, high points density is 

at (
nπ

4
,

mπ

4
) with m, n = 2, 4, 6, etc. Figure 13 shows the basic results. Visually, the points 

density at these points increases with p when p>1, and decrease with p when 0.5<p<1. 

We will terrify it in the following section. Due to that the curvature is a periodic function 

of the angles, it is convenient for us to transfer all the angles to a complete period. We 

have many choices and select [0,
π

2
] for p<1 and [

π

4
,

3π

4
] for p>1. Figure 14 is the picture 

after transformation. Clearly, the distributions of contacted points are regular. By using 

One-Sample Kolmogorov-Smirnov Test method, we find the distribution of angle for 

each p obeys qui-normal distribution (shown by the online red real lines in Figure 15). 
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Figure 15: Statistical Distributions of Contacted Points: Contacted Angle Statistics 

   The normal distribution function reads 

𝑓𝜃 =
1

𝜎√2𝜋
𝑒

−
(𝜃−𝜇)2

2𝜎2  

For p<1, we have μ =
π

4
. For p<1, we have μ =

π

2
. We evenly divide the range of 

[0, π/2] into 40 sections and statistic the contact numbers in each section. The result is 

shown in Figures. Nθ is the number of contacted points in each section.  

3.2.2 Predictive Formula for Packing Fraction 

We sign the local packing fraction as 

𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝐵 = 𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝐵(𝜃) = 𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝐵(𝐾∗) 
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𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝑆 = 𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝑆(𝜃) = 𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝑆(𝐾∗) 

Here, the 𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝐵  is the local packing fraction when the two contacted 

particles are all large size in the binary system and it is equal to the 𝜙𝑙𝑜𝑐𝑎𝑙_𝑆𝑆, which 

is the local packing fraction for two small size contacted particles. The 𝜙𝑙𝑜𝑐𝑎𝑙_𝐵𝑆 is 

the second condition which is the local packing fraction for two different size 

contacted particles.   

So, 

𝜙𝑙𝑜𝑐𝑎𝑙 =
𝑁𝑆

𝑁
∙ 𝜙𝑙𝑜𝑐𝑎𝑙𝐵𝑆

(𝜃) +
𝑁𝐵

𝑁
∙ 𝜙𝑙𝑜𝑐𝑎𝑙𝐵𝐵

(𝜃) 

Or 

𝜙𝑙𝑜𝑐𝑎𝑙 =
𝑁𝑆

𝑁
∙ 𝜙𝑙𝑜𝑐𝑎𝑙𝐵𝑆

(𝐾∗) +
𝑁𝐵

𝑁
∙ 𝜙𝑙𝑜𝑐𝑎𝑙𝐵𝐵

(𝐾∗) 

𝑁𝐵 is the number of relative big superdisks in the configuration and 𝑁𝑆 is the 

number of relative small superdisks in the configuration. Then the packing fraction 

of a maximal jammed superdisk configuration is obtained by 

𝜙 =< 𝜙𝑙𝑜𝑐𝑎𝑙 >= ∫ 𝜙𝑙𝑜𝑐𝑎𝑙(𝜃)𝑓𝜃𝑑𝜃
𝜃2−

𝜃1+

 

or 

𝜙 =< 𝜙𝑙𝑜𝑐𝑎𝑙 >= ∫ 𝜙𝑙𝑜𝑐𝑎𝑙(𝐾∗)𝑓𝐾∗𝑑𝐾∗
𝐾2

∗

𝐾1
∗
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During the calculation, we choose 𝜃1 = 0 and 𝜃2 = 𝜋/2. Of course, an alternative 

choice is 𝜃1 = 0 and 𝜃2 = 𝜋/4.  

 

Then the packing fraction of a maximal jammed superdisk configuration is 

obtained by 

𝜙 =< 𝜙𝑙𝑜𝑐𝑎𝑙 >= ∫ [
α

α+1
𝜙𝑙𝑜𝑐𝑎𝑙1(𝜃) +

1

α+1
𝜙𝑙𝑜𝑐𝑎𝑙2(𝜃)]𝑓𝜃𝑑𝜃

𝜃2

𝜃1
  , 

Where α is number ratio, 𝜙𝑙𝑜𝑐𝑎𝑙1(𝜃) and 𝜙𝑙𝑜𝑐𝑎𝑙2(𝜃) are the local volume fraction 

for big and big particle, big and small particle, respectively. For p<1, 𝜃1= 0 and 𝜃2 = π/2; 

for p>1, 𝜃1= π/4 and 𝜃2 = 3π/4. 

3.3 Simulation Verification  

This organizing principle is a global packing fraction theoretical prediction 

method for the maximally random jammed packings. To verify the method by using 

computational simulation, a rigorous algorithm, which has a high efficiency and accuracy, 

is necessary. In general, there are two basic approaches in molecular dynamics. One is 

time-driven molecular dynamics (TDMD), which is inspired by MD simulation of soft 

particle system. An alternative rigorous approach, event-driven molecular dynamics 

(EDMD), is advanced by collision event instead of time step.  

The improved EDMD, which is mentioned at the beginning of this paper, is used to guide 

us to generate the analytical construction of MRJ packing configuration of superdisks. The small 

non-overlapping particles are initially placed in the periodic simulation box with random 
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positions and orientations. Then the particles are given random translational and rotational 

velocities and their motion follow as they collide elastically and also expand uniformly with an 

expansion rate, which is larger at moderate densities and smaller at the higher densities. After the 

assigned steps, a jammed state with a diverging collision rate is reached and the density reaches a 

locally maximum value. Thus, the simulation algorithm can generate a same rigorous MRJ state 

packing as the system used in the prediction method. 

3.3.1 Generate of Packing Data Sets  

In order to verifying the prediction in a more general way, several sets of data are 

obtained from simulation by choosing representative parameters. The number of particles, 

N, in the system is a very important parameter in MRJ system. Jiao et.al (2010) studied 

several different particle number, N = 250, 500, 625 and 2500, and found that the 

statistical fluctuations associated with the packing characteristics are sufficiently 

diminished when N > 500. Here, N=500 is chosen so that we can obtain a relative stable 

data and save the cost of time as well. Deformation parameter is also considered as two 

different cases. Superdisk has convex shape ( p>0.5 ) and concave shape (p<0.5) but it’s 

not continuous only at p = 1, which is a circular disk. Thus, we chose two smaller than 1 

(i.e., p = 0.85 and p=0.95) and two larger than 1 (i.e., p = 1.5 and p=2.0) [16] so that we 

can analyze all the conditions on the continuous segment. In addition, besides these two 

common parameters, there are two ratios in two dimensions packing system. Size ratio β 

of the two superdisk species is defined as the ratio of the diameter of large superdisk over 

that of a small superdisk and we choose β = 1.2 and 1.8.. Let α denote the number ratio, 
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which is defined as the number of large superdiks over the number of small one and we 

choose α = 0.5 and 2.0. 

3.3.2 Comparison of Prediction and Simulation 

The predicted equation provide us the estimated MRJ packing fraction for a 

variety of binary superdisk packings. To verify its accuracy, we obtain the ϕMRJ data 

sets from the packing structure that we generate in 2.3.1 part.  The Table 1 shows us the 

data of theoretical local prediction, the simulation, the error between them and the 

standard deviation. The estimates agree with simulation results extremely well, with most 

of the deviations within 1.5%. Also, we make four figures of the packing fraction verses 

deformation parameter in different number ratio and size ratio by using the data sets. 

Figure 16 shows us the results of our prediction comforts to the data from the computer 

simulation as well.  

 

Table 1 Comparison of MRJ Packing Fractions 

 
Predicted 

data 

Simulation(average 

of 10 sets of Data) 
Error 

Standa

rd 

Deviati

on 

P=0.85;SR=1.2;NR=1.2; 0.860859 0.86751 0.77% 0.00079 

P=0.85;SR=1.2;NR=2:1; 0.860298 0.86765 0.85% 0.00047 

P=0.85;SR=1.8;NR=1.2; 0.872244 0.87308 0.10% 0.00074 

P=0.85;SR=1.8;NR=2:1; 0.865991 0.87093 0.57% 0.00054 
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SR: size ratio; NR: number ratio Big/small. 𝜙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑: Packing-fraction derived from 

our ND formula. 

P=0.90;SR=1.2;NR=1:2 0.854446 0.86027 0.68% 0.00038 

P=0.90;SR=1.2;NR=2:1 0.854112 0.86085 0.79% 0.0009 

P=0.90;SR=1.8;NR=1:2 0.86563 0.86676 0.13% 0.00063 

P=0.90;SR=1.8;NR=2:1 0.859704 0.86463 0.57% 0.00077 

     

P=1.5;SR=1.2;NR=1:2 0.88312 0.88748 0.49% 0.00055 

P=1.5;SR=1.2;NR=2:1 0.886116 0.88683 0.08% 0.00076 

P=1.5;SR=1.8;NR=1:2 0.895067 0.88929 0.65% 0.0006 

P=1.5;SR=1.8;NR=2:1 0.892089 0.88802 0.46% 0.00075 

     

P=2.0;SR=1.2;NR=1:2 0.910302 0.91037 0.0075% 0.00131 

P=2.0;SR=1.2;NR=2:1 0.9125 0.91064 0.20% 0.00134 

P=2.0;SR=1.8;NR=1:2 0.909766 0.90473 0.55% 0.00075 

P=2.0;SR=1.8;NR=2:1 0.912231 0.9034 0.97% 0.00116 
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Figure 16: Comparison of the MRJ Packing Fraction Estimated Using the Prediction Equation and 

Obtained from Simulations for Various Binary Superdisk Packings. 

Furthermore, we predict global packing fraction in different size ratio and number 

ratio and analyze the influence of these factors to the packing fraction as shown in Figure 

17 and Figure 18. Through comparison of these results to the simulation results (Figure 6 

and Figure 8), we found the trend are extremely similar and the data error between the 

predicted and the simulated is within 3% even for such small and relative large 

statistically fluctuation system.   

In summary, we have devised a quantitative local organizing principle for MRJ 

packings of superdisks in two dimensions, which include a rich family of shapes. 

Specifically, the distribution of the contact angles defined for a single particle for all 

different shapes, when properly re-scaled, possesses a universal Gaussian form, who 

mean value is associated with the minimal surface curvatures. This local organizing 
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principle allows us to devise a formulism to accurately estimate the MRJ packing fraction 

for a wide range of nonspherical shapes.  

 

Figure 17: Predicted Packing Fraction versus Size Ratio for p=1.5 
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Figure 18: Predicted Packing Fraction versus Number Ratio for p=1.5 
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CHAPTER 4 3D MRJ FOR BINARY ELLIPSOIDS 

In three dimensions, the packing system is more practical because the R
3
 packing 

structure not only can be used as a structure of a specific granular material, but also can 

be an initial configuration for further research. Thus, non-spherical jammed packing 

characteristics in higher dimensions become a new focus and considerably more complex 

than in two dimensions. Non-spherical particles introduce rotational degrees of freedom 

not present in the simple sphere packings and can dramatically change the jamming 

characteristics from those of sphere packings. As the relative simple non-spherical 

particle, ellipsoids are very popular for preliminary research of the structure 

characteristics. A three-dimensional ellipsoid is a centrally symmetric body occupying 

the region 

(
x

a
)2 + (

y

b
)2 + (

z

c
)2 ≤ 1 , 

Where a, b and c are the semiaxes of the ellipsoid. Thus, we can see three 

different types ellipsoids, oblate, prolate, or scalene, by just changing the semiaxes and 

we could have many variable when we study the ellipsoids. It is noteworthy that MRJ-

like packings of nearly spherical ellipsoid can be obtained with ϕ ≈ 0.74, which has only 

recently been proved that the densest packing fraction (face-centered cubic lattice). That 

indicates that there exist ordered ellipsoid packings with appreciably higher densities. It 

is true that the densest known ellipsoid packings were discovered by Donev(2004).  

Although the effect between packing fraction and aspect ratio of some ordered ellipsoids 
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packings or densest optimal packing had been studied [14], the binary ellipsoid are barely 

systematical discussed. In this paper, we generate different  

 

Figure 19: Aspect Ration versus Packing Fraction for Ellipsoids 
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Figure 20: Size Ratio versus Packing Fraction for Ellipsoids 

ellipsoid packings by change the aspect ratio and size ratio when number ratio and shape 

factor are equal to 1. The semiaxes here are 1, α
β
 and α, where α is aspect ratio and β is 

shape factor. 

From the Figure 19, we find that the packing fraction decreases following the 

increasing aspect ratio. Note that the binary ellipsoids data in this figure tend to show a 

very similar behavior for mono-prolate spheroids in Ref. [12].  And Figure 20 shows at 

unit number ratio and shape factor case, the size ratio has little influence on the packing 

fraction no matter what the aspect ratio is.  
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

In this dissertation, we have reviewed two different molecular dynamics methods, 

in particular, the improved event-driven molecular dynamics algorithm (EDMD). EDMD 

is a particle system simulation method driven by the event instead of the time advancing 

in time-driven MD. In this method, numbers of particles are given with random positions, 

translational, rotational velocities and orientations and uniformly expand at a fixed 

expansion rate after certain relaxation cycles. Since for compression in reality, such as a 

pile of sands, we only can get a densest packing by relaxing the packing after every 

compressed operation, which conforms to the physical principle. Hence, in the relaxation 

process, the collision event is the “driven force” and the simulation advance through 

following the schedule of the impending event. In this algorithm, the impending event is 

updated by finding the first non-zero root of calculation of the overlap potential, which is 

a very efficient way.  However, the time cost of the update nearest impending event in 

computation is very expensive. Thus, the near-neighbor lists (NNLs) searching method is 

applied in current EDMD.  This searching method first adapts to non-spherical particle 

system and it successfully built a neighborhoods list so that one can update the impending 

event only among its neighbors.  This current EDMD has highly decreased the cost of 

time and possess higher efficiency and accuracy for non-spherical particle packing 

simulation. Thus it is adjustable for different shape of the particle, which cannot be 

implemented by other algorithms. 

By using this algorithm, we have generated MRJ binary superdisks in two 

dimensions and binary ellipsoids in three dimensions. For MRJ binary superdisks, the 
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effect of size ratio and the number ratio to the packing structure are considered. We found 

that at a fixed number ratio, the packing fraction increases with the increasing of the size 

ratio. Then at a fixed size ratio, where size ratio > 1, the packing fraction trend to 

decrease with the number ratio get larger. They are reasonable because at the same 

number ratio, the large size ratio, the more small size particle can fill in the spare volume 

among the large particles and at the same size ratio, the larger number ratio, the fewer 

small size particle fill in the volume.  

Even more exciting is that we have devised a quantitative local organizing 

principle for MRJ packings of superdisks in two dimensions, which include a rich family 

of particle geometric shapes. Furthermore, the distribution of the contact angles defined 

for a single particle for all different shapes, when properly re-scaled, possesses a 

universal Gaussian form. The mean contact angle corresponding to the minimal surface 

curve and the distribution becomes narrower as the particle shape deviates more from that 

of a sphere. We provide arguments that such a distribution arises from the two competing 

requirements defining the MRJ state, i.e., maximal disorder and jamming. This 

organizing principle is then employed to provide accurate estimates of the MRJ packing 

fraction 𝜙𝑀𝑅𝐽 for a variety of binary superdisk systems, with different particle shape, size 

and number ratios. 

For 3-dimensions binary elliposids, we only consider a very simple case in which 

the shape factor and the number ratio are all units and the trend on the figures are very 

similar to the mono-system. In addition, we found that the size ratio is not very important 
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for packing fraction if the number ratio and shape factor are 1. Besides, these packing 

systems that we generated by event driven molecular dynamics not only can be the 

structures of granular materials but also can be the initial configurations in sintering 

which is a very hot area of research.  

In the future, we would like to further explore the characteristics of poly-disperse 

MRJ non-spherical particle system in two dimensional space, which hasn’t been studied 

yet. For three dimensions, not only poly-disperse systems are interesting, but also the 

superellipsoids or the poly-disperse superellipsoids system, especially the “disperse” 

follows the normal distribution or even distribution, etc. In addition, the extrapolated 

prediction from two dimensions and mechanical analysis for these new structures is very 

practical as well. 
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