147837-Thumbnail Image.png
Description

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to

Human-environment interactions in aeolian (windblown) systems has focused research on<br/>human’s role in causing and aiding recovery from natural and anthropogenic disturbance. There<br/>is room for improvement in understanding the best methods and considerations for manual<br/>coastal foredune restoration. Furthermore, the extent to which humans play a role in changing the<br/>shape and surface textures of quartz sand grains is poorly understood. The goal of this thesis is<br/>two-fold: 1) quantify the geomorphic effectiveness of a multi-year manually rebuilt foredune and<br/>2) compare the shapes and microtextures on disturbed and undisturbed quartz sand grains. For<br/>the rebuilt foredune, uncrewed aerial systems (UAS) were used to survey the site, collecting<br/>photos to create digital surface models (DSMs). These DSMs were compared at discrete<br/>moments in time to create a sediment budget. Water levels and cross-shore modeling is also<br/>considered to predict the decadal evolution of the site. In the two years since rebuilding, the<br/>foredune has been stable, but not geomorphically resilient. Modeling shows landward foredune<br/>retreat and beach widening. For the quartz grains, t-testing of shape characteristics showed that<br/>there may be differences in the mean circularity between grains from off-highway vehicle and<br/>non-riding areas. Quartz grains from a variety of coastal and inland dunes were imaged using a<br/>scanning electron microscopy to search for evidence of anthropogenically-induced<br/>microtextures. On grains from Oceano Dunes in California, encouraging textures like parallel<br/>striations, grain fracturing, and linear conchoidal fractures provide exploratory evidence of<br/>anthropogenic microtextures. More focused research is recommended to confirm this exploratory<br/>work.

24.18 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Disturbance signatures and sediment characteristics in aeolian dune landscapes
Contributors
Date Created
2021-05
Resource Type
  • Text
  • Machine-readable links