Description

Grain boundary grooves are common features on polycrystalline solid–liquid interfaces. Their local microstructure can be closely approximated as a “variational” groove, the theoretical profile for which is analyzed here for its Gibbs-Thomson thermo-potential distribution. The distribution of thermo-potentials for a

Grain boundary grooves are common features on polycrystalline solid–liquid interfaces. Their local microstructure can be closely approximated as a “variational” groove, the theoretical profile for which is analyzed here for its Gibbs-Thomson thermo-potential distribution. The distribution of thermo-potentials for a variational groove exhibits gradients tangential to the solid–liquid interface. Energy fluxes stimulated by capillary-mediated tangential gradients are divergent and thus capable of redistributing energy on real or simulated grain boundary grooves. Moreover, the importance of such capillary-mediated energy fields on interfaces is their influence on stability and pattern formation dynamics. The capillary-mediated field expected to be present on a stationary grain boundary groove is verified quantitatively using the multiphase-field approach. Simulation and post-processing measurements fully corroborate the presence and intensity distribution of interfacial cooling, proving that thermodynamically-consistent numerical models already support, without any modification, capillary perturbation fields, the existence of which is currently overlooked in formulations of sharp interface dynamic models.

Reuse Permissions
  • Downloads
    pdf (1.7 MB)

    Details

    Title
    • Detection of Capillary-Mediated Energy Fields on a Grain Boundary Groove: Solid-Liquid Interface Perturbations
    Contributors
    Date Created
    2017-12-06
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.3390/met7120547
    • Identifier Type
      International standard serial number
      Identifier Value
      2075-4701

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Glicksman, M., & Ankit, K. (2017). Detection of Capillary-Mediated Energy Fields on a Grain Boundary Groove: Solid–Liquid Interface Perturbations. Metals, 7(12), 547. doi:10.3390/met7120547

    Machine-readable links