Matching Items (406)
128242-Thumbnail Image.png
Description

This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The

This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H[subscript 2]O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures.

ContributorsShi, Xiaoyang (Author) / Li, Qibin (Author) / Wang, Tao (Author) / Lackner, Klaus (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-06-22
128252-Thumbnail Image.png
Description

The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel,

The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control.

ContributorsAlum, Absar (Author) / Absar, Isra M. (Author) / Asaad, Hamas (Author) / Rubino, Joseph R. (Author) / Ijaz, M. Khalid (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-06-17
128269-Thumbnail Image.png
Description

Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably

Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

ContributorsVahidi, Mahmoud (Author) / Gifford, Jessica (Author) / Zhang, Shengke (Author) / Krishnamurthy, S. (Author) / Yu, Z. G. (Author) / Lei, Yu (Author) / Huang, Mengchu (Author) / Youngbull, Cody (Author) / Chen, Tingyong (Author) / Newman, Nathan (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-15
128272-Thumbnail Image.png
Description

Throughout history, various civilizations developed methodologies for the collection and disposal of human waste. The methodologies throughout the centuries have been characterized by technological peaks on the one hand, and by the disappearance of the technologies and their reappearance on the other. The purpose of this article is to trace

Throughout history, various civilizations developed methodologies for the collection and disposal of human waste. The methodologies throughout the centuries have been characterized by technological peaks on the one hand, and by the disappearance of the technologies and their reappearance on the other. The purpose of this article is to trace the development of sewage collection and transport with an emphasis on toilets in ancient civilizations. Evolution of the major achievements in the scientific fields of sanitation with emphasis on the lavatory (or toilets) technologies through the centuries up to the present are presented. Valuable insights into ancient wastewater technologies and management with their apparent characteristics of durability, adaptability to the environment, and sustainability are provided. Gradual steps improved the engineering results until the establishment of the contemporary toilet system, which provides a combined solution for flushing, odor control, and the sanitation of sewerage. Even though the lack of proper toilet facilities for a great percentage of the present day global population is an embarrassing fact, the worldwide efforts through millennia for the acquisition of a well-engineered toilet were connected to the cultural level of each period.

ContributorsAntoniou, Georgios P. (Author) / De Feo, Giovanni (Author) / Fardin, Franz (Author) / Tamburrino, Aldo (Author) / Khan, Saifullah (Author) / Tie, Fang (Author) / Reklaityte, Ieva (Author) / Kanetaki, Eleni (Author) / Zheng, Xiao Yun (Author) / Mays, Larry (Author) / Angelakis, Andreas N. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-08-13
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128280-Thumbnail Image.png
Description

Physical fitness has been long associated with maintenance and improvement of motor performance as we age. In particular, measures of psychomotor speed and motor dexterity tend to be higher in physically fit aging adults as compared to their sedentary counterparts. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation

Physical fitness has been long associated with maintenance and improvement of motor performance as we age. In particular, measures of psychomotor speed and motor dexterity tend to be higher in physically fit aging adults as compared to their sedentary counterparts. Using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS), we explored the patterns of neural activity that may, in part, account for differences between individuals of varying physical fitness levels. In this study, we enrolled both sedentary and physically fit middle age (40–60) and younger (18–30) adults and measured upper extremity motor performance during behavioral testing. In a follow-up session, we employed TMS and fMRI to assess levels of interhemispheric communication during unimanual tasks. Results show that increased physical fitness is associated with better upper extremity motor performance on distal dexterity assessments and increased levels of interhemispheric inhibition in middle age adults. Further, the functional correlates of changes of ipsilateral activity appears to be restricted to the aging process as younger adults of varying fitness levels do not differ in hemispheric patterns of activity or motor performance. We conclude that sedentary aging confers a loss of interhemispheric inhibition that is deleterious to some aspects of motor function, as early as midlife, but these changes can be mediated by chronic engagement in aerobic exercise.

ContributorsMcGregor, Keith M. (Author) / Nocera, Joe R. (Author) / Sudhyadhom, Atchar (Author) / Patten, Carolynn (Author) / Manini, Todd M. (Author) / Kleim, Jeffrey (Author) / Crosson, Bruce (Author) / Butler, Andrew J. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-30
128281-Thumbnail Image.png
Description

Enhancement algorithms are typically applied to video content to increase their appeal to viewers. Such algorithms are readily available in the literature and are already widely applied in, for example, commercially available TVs. On the contrary, not much research has been done on enhancing stereoscopic 3D video content. In this

Enhancement algorithms are typically applied to video content to increase their appeal to viewers. Such algorithms are readily available in the literature and are already widely applied in, for example, commercially available TVs. On the contrary, not much research has been done on enhancing stereoscopic 3D video content. In this paper, we present research focused on the effect of applying enhancement algorithms used for 2D content on 3D side-by-side content. We evaluate both offline enhancement of video content based on proprietary enhancement algorithms and real-time enhancement in the TVs. This is done using stereoscopic TVs with active shutter glasses, viewed both in their 2D and 3D viewing mode. The results of this research show that 2D enhancement algorithms are a viable first approach to enhance 3D content. In addition to video quality degradation due to the loss of spatial resolution as a consequence of the 3D video format, brightness reduction inherent to polarized or shutter glasses similarly degrades video quality. We illustrate the benefit of providing brightness enhancement for stereoscopic displays.

ContributorsWu, Sin Lin (Author) / Caviedes, Jorge E. (Author) / Karam, Lina (Author) / Heynderickx, Ingrid (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-06-19
128284-Thumbnail Image.png
Description

A number of emerging dynamic traffic analysis applications, such as regional or statewide traffic assignment, require a theoretically rigorous and computationally efficient model to describe the propagation and dissipation of system congestion with bottleneck capacity constraints. An open-source light-weight dynamic traffic assignment (DTA) package, namely DTALite, has been developed to

A number of emerging dynamic traffic analysis applications, such as regional or statewide traffic assignment, require a theoretically rigorous and computationally efficient model to describe the propagation and dissipation of system congestion with bottleneck capacity constraints. An open-source light-weight dynamic traffic assignment (DTA) package, namely DTALite, has been developed to allow a rapid utilization of advanced dynamic traffic analysis capabilities. This paper describes its three major modeling components: (1) a light-weight dynamic network loading simulator that embeds Newell’s simplified kinematic wave model; (2) a mesoscopic agent-based DTA procedure to incorporate driver’s heterogeneity; and (3) an integrated traffic assignment and origin–destination demand calibration system that can iteratively adjust path flow volume and distribution to match the observed traffic counts. A number of real-world test cases are described to demonstrate the effectiveness and performance of the proposed models under different network and data availability conditions.

ContributorsZhou, Xuesong (Author) / Taylor, Jeffrey (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-01
128204-Thumbnail Image.png
Description

Every year, flood disasters are responsible for widespread destruction and loss of human life. Remote sensing data are capable of providing valuable, synoptic coverage of flood events but are not always available because of satellite revisit limitations, obstructions from cloud cover or vegetation canopy, or expense. In addition, knowledge of

Every year, flood disasters are responsible for widespread destruction and loss of human life. Remote sensing data are capable of providing valuable, synoptic coverage of flood events but are not always available because of satellite revisit limitations, obstructions from cloud cover or vegetation canopy, or expense. In addition, knowledge of road accessibility is imperative during all phases of a flood event. In June 2013, the City of Calgary experienced sudden and extensive flooding but lacked comprehensive remote sensing coverage. Using this event as a case study, this work illustrates how data from non-authoritative sources are used to augment traditional data and methods to estimate flood extent and identify affected roads during a flood disaster. The application of these data, which may have varying resolutions and uncertainities, provide an estimation of flood extent when traditional data and methods are lacking or incomplete. When flooding occurs over multiple days, it is possible to construct an estimate of the advancement and recession of the flood event. Non-authoritative sources also provide flood information at the micro-level, which can be difficult to capture from remote sensing data; however, the distibution and quantity of data collected from these sources will affect the quality of the flood estimations.

ContributorsSchnebele, Emily (Author) / Cervone, Guido (Author) / Kumar, Shamanth (Author) / Waters, Nigel (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-02-18
128205-Thumbnail Image.png
Description

Future climate projections robustly indicate that the Mediterranean region will experience a significant decrease of mean annual precipitation and an increase in temperature. These changes are expected to seriously affect the hydrologic regime, with a limitation of water availability and an intensification of hydrologic extremes, and to negatively impact local

Future climate projections robustly indicate that the Mediterranean region will experience a significant decrease of mean annual precipitation and an increase in temperature. These changes are expected to seriously affect the hydrologic regime, with a limitation of water availability and an intensification of hydrologic extremes, and to negatively impact local economies. In this study, we quantify the hydrologic impacts of climate change in the Rio Mannu basin (RMB), an agricultural watershed of 472.5 km2 in Sardinia, Italy. To simulate the wide range of runoff generation mechanisms typical of Mediterranean basins, we adopted a physically based, distributed hydrologic model. The high-resolution forcings in reference and future conditions (30-year records for each period) were provided by four combinations of global and regional climate models, bias-corrected and downscaled in space and time (from ~25 km, 24 h to 5 km, 1 h) through statistical tools. The analysis of the hydrologic model outputs indicates that the RMB is expected to be severely impacted by future climate change. The range of simulations consistently predict (i) a significant diminution of mean annual runoff at the basin outlet, mainly due to a decreasing contribution of the runoff generation mechanisms depending on water available in the soil; (ii) modest variations in mean annual runoff and intensification of mean annual discharge maxima in flatter sub-basins with clay and loamy soils, likely due to a higher occurrence of infiltration excess runoff; (iii) reduction of soil water content and actual evapotranspiration in most areas of the basin; and (iv) a drop in the groundwater table. Results of this study are useful to support the adoption of adaptive strategies for management and planning of agricultural activities and water resources in the region.

ContributorsPiras, M. (Author) / Mascaro, Giuseppe (Author) / Deidda, R. (Author) / Vivoni, Enrique (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-15