Matching Items (6)

127930-Thumbnail Image.png

Detection of Capillary-Mediated Energy Fields on a Grain Boundary Groove: Solid–Liquid Interface Perturbations

Description

Grain boundary grooves are common features on polycrystalline solid–liquid interfaces. Their local microstructure can be closely approximated as a “variational” groove, the theoretical profile for which is analyzed here for

Grain boundary grooves are common features on polycrystalline solid–liquid interfaces. Their local microstructure can be closely approximated as a “variational” groove, the theoretical profile for which is analyzed here for its Gibbs–Thomson thermo-potential distribution. The distribution of thermo-potentials for a variational groove exhibits gradients tangential to the solid–liquid interface. Energy fluxes stimulated by capillary-mediated tangential gradients are divergent and thus capable of redistributing energy on real or simulated grain boundary grooves. Moreover, the importance of such capillary-mediated energy fields on interfaces is their influence on stability and pattern formation dynamics. The capillary-mediated field expected to be present on a stationary grain boundary groove is verified quantitatively using the multiphase-field approach. Simulation and post-processing measurements fully corroborate the presence and intensity distribution of interfacial cooling, proving that thermodynamically-consistent numerical models already support, without any modification, capillary perturbation fields, the existence of which is currently overlooked in formulations of sharp interface dynamic models.

Contributors

Agent

Created

Date Created
  • 2017-12-06

158064-Thumbnail Image.png

Computational Modeling for Phononic Crystal Property Discovery and Design – From Eigenvalue Analysis to Machine Learning

Description

Phononic crystals are artificially engineered materials that can forbid phonon propagation in a specific frequency range that is referred to as a “phononic band gap.” Phononic crystals that have band

Phononic crystals are artificially engineered materials that can forbid phonon propagation in a specific frequency range that is referred to as a “phononic band gap.” Phononic crystals that have band gaps in the GHz to THz range can potentially enable sophisticated control over thermal transport with “phononic devices”. Calculations of the phononic band diagram are the standard method of determining if a given phononic crystal structure has a band gap. However, calculating the phononic band diagram is a computationally expensive and time-consuming process that can require sophisticated modeling and coding. In addition to this computational burden, the inverse process of designing a phononic crystal with a specific band gap center frequency and width is a challenging problem that requires extensive trial-and-error work.

In this dissertation, I first present colloidal nanocrystal superlattices as a new class of three-dimensional phononic crystals with periodicity in the sub-20 nm size regime using the plane wave expansion method. These calculations show that colloidal nanocrystal superlattices possess phononic band gaps with center frequencies in the 102 GHz range and widths in the 101 GHz range. Varying the colloidal nanocrystal size and composition provides additional opportunities to fine-tune the phononic band gap. This suggests that colloidal nanocrystal superlattices are a promising platform for the creation of high frequency phononic crystals.

For the next topic, I explore opportunities to use supervised machine learning for expedited discovery of phononic band gap presence, center frequency and width for over 14,000 two-dimensional phononic crystal structures. The best trained model predicts band gap formation, center frequencies and band gap widths, with 94% accuracy and coefficients of determination (R2) values of 0.66 and 0.83, respectively.

Lastly, I expand the above machine learning approach to use machine learning to design a phononic crystal for a given set of phononic band gap properties. The best model could predict elastic modulus of host and inclusion, density of host and inclusion, and diameter-to-lattice constant ratio for target center and width frequencies with coefficients of determinations of 0.94, 0.98, 0.94, 0.71, and 0.94 respectively. The high values coefficients of determination represents great opportunity for phononic crystal design.

Contributors

Agent

Created

Date Created
  • 2020

157897-Thumbnail Image.png

Design of a thermally stable nano-crystalline alloy with superior tensile creep and fatigue behavior

Description

Materials have been the backbone of every major invention in the history of mankind, e.g. satellites and space shuttles would not exist without advancement in materials development. Integral to this,

Materials have been the backbone of every major invention in the history of mankind, e.g. satellites and space shuttles would not exist without advancement in materials development. Integral to this, is the development of nanocrystalline (NC) materials that promise multitude of properties for advanced applications. However, they do not tend to preserve structural integrity under intense cyclic loading or long-term temperature exposures. Therefore, it is imperative to understand factors that alter the sub-features controlling both structural and functional properties under extreme conditions, particularly fatigue and creep. Thus, this dissertation systematically studies the tensile creep and fatigue behaviour of a chemically optimized and microstructurally stable bulk NC copper (Cu)-3at.% tantalum (Ta) alloy.

Strategic engineering of nanometer sized clusters of Ta into the alloy’s microstructure were found to suppress the microstructure instability and render remarkable improvement in the high temperature tensile creep resistance up to 0.64 times the melting temperature of Cu. Primary creep in this alloy was found to be governed by the relaxation of the microstructure under the applied stress. Further, during the secondary creep, short circuit diffusion of grain boundary atoms resulted in the negligible steady-state creep rate in the alloy. Under fatigue loading, the alloy showed higher resistance for crack nucleation owing to the inherent microstructural stability, and the interaction of the dislocations with the Ta nanoclusters. The underlying mechanism was found to be related to the diffused damage accumulation, i.e., during cyclic loading many grains participate in the plasticity process (nucleation of discrete grain boundary dislocations) resulting in homogenous accumulation rather than localized one as typically observed in coarse-grained materials. Overall, the engineered Ta nanoclusters were responsible for governing the underlying anomalous high temperature creep and fatigue deformation mechanisms in the alloy.

Finally, this study presents a design approach that involves alloying of pure metals in order to impart stability in NC materials and significantly enhance their structural properties, especially those at higher temperatures. Moreover, this design approach can be easily translated to other multicomponent systems for developing advanced high-performance structural materials.

Contributors

Agent

Created

Date Created
  • 2019

158375-Thumbnail Image.png

Four Dimensional (4D) Microstructural and Electrochemical Characterization of Dissimilar-metal Corrosion in Naval Structural Joints

Description

AA 7XXX alloys are used extensively in aircraft and naval structures due to their excellent strength to weight ratio. These alloys are often exposed to harsh corrosive environments and mechanical

AA 7XXX alloys are used extensively in aircraft and naval structures due to their excellent strength to weight ratio. These alloys are often exposed to harsh corrosive environments and mechanical stresses that can compromise their reliability in service. They are also coupled with fasteners that are composed of different materials such as Titanium alloys. Such dissimilar metal contact facilitates galvanic and crevice corrosion, which can further reduce their lifetimes. Despite decades of research in the area, the confluence of mechanical, microstructural, and electrochemical aspects of damage is still unclear. Traditionally, 2D and destructive methods have often been employed to study the corrosion and cracking behavior in these systems which can be severely limiting and lead to inaccurate conclusions. This dissertation is aimed at comprehensively studying the corrosion and cracking behavior of these systems using time-dependent 3D microstructural characterization, as well as correlative microscopy. The microstructural evolution of corrosion in AA 7075 was studied using a combination of potentiodynamic polarization, X-ray Computed Tomography (XCT) and Transmission X-ray Microscopy (TXM). In both experiments, a strong emphasis was placed on studying localized corrosion attack at constituent particles and intergranular corrosion. With an understanding of the alloy’s corrosion behavior, a dissimilar alloy couple comprising AA 7075 / Ti-6Al-4V was then investigated. Ex situ and in situ x-ray microtomography was used extensively to investigate the evolution of pitting corrosion and corrosion fatigue in AA 7075 plates fastened separately with Ti-6Al-4V screws and rivets. The 4D tomography combined with the extensive fractography yielded valuable information pertaining the preferred sites of pit initiation, crack initiation and growth in these complex geometries. The use of correlative microscopy-based methodologies yielded multimodal characterization results that provided a unique and seminal insight on corrosion mechanisms in these materials.

Contributors

Agent

Created

Date Created
  • 2020

157730-Thumbnail Image.png

4D microstructural characterization of electromigration and thermal aging damage in tin-rich solder joints

Description

As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration

As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. This thesis focuses on the study of EM, thermal aging, and thermal cycling in Sn-rich solder joints. Solder joints were either of controlled microstructure and orientation or had trace alloying element additions. Sn grain orientation has been linked to a solder joints’ susceptibility to EM damage, but the precise relationship between orientation and intermetallic (IMC) and void growth has not been deduced. In this research x-ray microtomography was used to nondestructively scan samples and generate 3D reconstructions of both surface and internal features such as interfaces, IMC particles, and voids within a solder joint. Combined with controlled fabrication techniques to create comparable samples and electron backscatter diffraction (EBSD) and energy-dispersive spectroscopy (EDS) analysis for grain orientation and composition analysis, this work shows how grain structure plays a critical role in EM damage and how it differs from damage accrued from thermal effects that occur simultaneously. Unique IMC growth and voiding behaviors are characterized and explained in relation to the solder microstructures that cause their formation and the possible IMC-suppression effects of trace alloying element addition are discussed.

Contributors

Agent

Created

Date Created
  • 2019

158157-Thumbnail Image.png

Phase-Field Modeling of Electromigration-Mediated Morphological Evolution of Voids in Interconnects

Description

Miniaturization of microdevices comes at the cost of increased circuit complexity and operating current densities. At high current densities, the resulting electron wind imparts a large momentum to metal ions

Miniaturization of microdevices comes at the cost of increased circuit complexity and operating current densities. At high current densities, the resulting electron wind imparts a large momentum to metal ions triggering electromigration which leads to degradation of interconnects and solder, ultimately resulting in circuit failure. Although electromigration-induced defects in electronic materials can manifest in several forms, the formation of voids is a common occurrence. This research aims at understanding the morphological evolution of voids under electromigration by formulating a diffuse interface approach that accounts for anisotropic mobility in the metallic interconnect. Based on an extensive parametric study, this study reports the conditions under which pancaking of voids or the novel void ‘swimming’ regimes are observed. Finally, inferences are drawn to formulate strategies using which the reliability of interconnects can be improved.

Contributors

Agent

Created

Date Created
  • 2020