Description

Diisobutylene maleic acid, or DIBMA, offers a novel approach to integral membrane protein extraction without requiring the use of detergent. This copolymer extracts the protein along with the surrounding lipids, creating native nanodiscs. This method of solubilization is the preferred

Diisobutylene maleic acid, or DIBMA, offers a novel approach to integral membrane protein extraction without requiring the use of detergent. This copolymer extracts the protein along with the surrounding lipids, creating native nanodiscs. This method of solubilization is the preferred method, as traditional detergent solubilization can possibly alter the structural and functional integrity of the membrane protein. DIBMA solubilization, on the other hand, is able to create a more stable environment for the integral membrane protein, while allowing purification through commonly used chromatography methods similar to established detergent solubilization protocols. In this project, we study the ability of DIBMA to isolate the integral membrane protein, chloroplast ATP synthase, without the use of detergents.

Reuse Permissions
  • 1.08 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • Structural Discovery of CF1F0 using Nanodiscs: exploring the ability of DIBMA to isolate spinach chloroplast ATP synthase
    Contributors
    Date Created
    2023-05
    Resource Type
  • Text
  • Machine-readable links