Description
This study exmaines the effect of in-vehicle infotainment display depth on driving performance. More features are being built into infotainment displays, allowing drivers to complete a greater number of secondary tasks while driving. However, the complexity of completing these tasks

This study exmaines the effect of in-vehicle infotainment display depth on driving performance. More features are being built into infotainment displays, allowing drivers to complete a greater number of secondary tasks while driving. However, the complexity of completing these tasks can take attention away from the primary task of driving, which may present safety risks. Tasks become more time consuming as the items drivers wish to select are buried deeper in a menu’s structure. Therefore, this study aims to examine how deeper display structures impact driving performance compared to more shallow structures.

Procedure. Participants complete a lead car following task, where they follow a lead car and attempt to maintain a time headway (TH) of 2 seconds behind the lead car at all times, while avoiding any collisions. Participants experience five conditions where they are given tasks to complete with an in-vehicle infotainment system. There are five conditions, each involving one of five displays with different structures: one-layer vertical, one-layer horizontal, two-layer vertical, two-layer horizontal, and three-layer. Brake Reaction Time (BRT), Mean Time Headway (MTH), Time Headway Variability (THV), and Time to Task Completion (TTC) are measured for each of the five conditions.

Results. There is a significant difference in MTH, THV, and TTC for the three-layer condition. There is a significant difference in BRT for the two-layer horizontal condition. There is a significant difference between one- and two-layer displays for all variables, BRT, MTH, THV, and TTC. There is also a significant difference between one- and three-layer displays for TTC.

Conclusions. Deeper displays negatively impact driving performance and make tasks more time consuming to complete while driving. One-layer displays appear to be optimal, although they may not be practical for in-vehicle displays.
Reuse Permissions
  • Downloads
    pdf (2.6 MB)

    Details

    Title
    • Information architecture in vehicle infotainment displays
    Contributors
    Date Created
    2018
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2018
      Note type
      thesis
    • Includes bibliographical references (pages 22-23)
      Note type
      bibliography
    • Field of study: Human Systems Engineering

    Citation and reuse

    Statement of Responsibility

    by Emily Gran

    Machine-readable links