Description
E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers

E-Mail header injection vulnerability is a class of vulnerability that can occur in web applications that use user input to construct e-mail messages. E-Mail injection is possible when the mailing script fails to check for the presence of e-mail headers in user input (either form fields or URL parameters). The vulnerability exists in the reference implementation of the built-in “mail” functionality in popular languages like PHP, Java, Python, and Ruby. With the proper injection string, this vulnerability can be exploited to inject additional headers and/or modify existing headers in an e-mail message, allowing an attacker to completely alter the content of the e-mail.

This thesis develops a scalable mechanism to automatically detect E-Mail Header Injection vulnerability and uses this mechanism to quantify the prevalence of E- Mail Header Injection vulnerabilities on the Internet. Using a black-box testing approach, the system crawled 21,675,680 URLs to find URLs which contained form fields. 6,794,917 such forms were found by the system, of which 1,132,157 forms contained e-mail fields. The system used this data feed to discern the forms that could be fuzzed with malicious payloads. Amongst the 934,016 forms tested, 52,724 forms were found to be injectable with more malicious payloads. The system tested 46,156 of these and was able to find 496 vulnerable URLs across 222 domains, which proves that the threat is widespread and deserves future research attention.
Reuse Permissions
  • Downloads
    pdf (2.6 MB)

    Details

    Title
    • E-mail header injections - an analysis of the World Wide Web
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2016
      Note type
      thesis
    • Includes bibliographical references (pages 60-64)
      Note type
      bibliography
    • Field of study: Computer science

    Citation and reuse

    Statement of Responsibility

    by Sai Prashanth Chandramouli

    Machine-readable links