A methodology to sequentially identify cost effective energy efficiency measures: application to net zero school buildings
Document
Description
Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to meet the cumulative annual energy demands of the facility. A key capability for the proliferation of Net Zero Energy Buildings (NZEB) is the need for a design methodology that identifies the optimum mix of energy efficient design features to be incorporated into the building. The design methodology should take into account the interaction effects of various energy efficiency measures as well as their associated costs so that life cycle cost can be minimized for the entire life span of the building.
This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels.
Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process.
This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels.
Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process.