Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Comparison of feature selection methods for robust dexterous decoding of finger movements from the primary motor cortex of a non-human primate using support vector machine
  5. Full metadata

Comparison of feature selection methods for robust dexterous decoding of finger movements from the primary motor cortex of a non-human primate using support vector machine

Full metadata

Description

Robust and stable decoding of neural signals is imperative for implementing a useful neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was trained to perform combined flexions of the thumb, index and middle fingers in addition to individual flexions and extensions of the same digits. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon action potential firing rates. The effect of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis, and Mutual Information Maximization was compared based on SVM classification performance. SVM classification was used to examine the functional parameters of (i) efficacy (ii) endurance to simulated failure and (iii) longevity of classification. The effect of using isolated-neuron and multi-unit firing rates was compared as the feature vector supplied to the SVM. The best classification performance was on post-implantation day 36, when using multi-unit firing rates the worst classification accuracy resulted from features selected with Wilcoxon signed-rank test (51.12 ± 0.65%) and the best classification accuracy resulted from Mutual Information Maximization (93.74 ± 0.32%). On this day when using single-unit firing rates, the classification accuracy from the Wilcoxon signed-rank test was 88.85 ± 0.61 % and Mutual Information Maximization was 95.60 ± 0.52% (degrees of freedom =10, level of chance =10%)

Date Created
2015
Contributors
  • Padmanaban, Subash (Author)
  • Greger, Bradley (Thesis advisor)
  • Santello, Marco (Thesis advisor)
  • Helms Tillery, Stephen (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Biomedical Engineering
  • Feature Selection
  • Machine Learning
  • Neural Decoding
  • Neural Engineering
  • Neuroprosthetics
  • Support Vector Machines
  • Support Vector Machines
  • Neuroprostheses
  • Fingers--Movements.
  • Fingers
Resource Type
Text
Genre
Masters Thesis
Academic theses
Extent
vi, 36 pages : color illustrations
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.34830
Statement of Responsibility
by Subash Padmanaban
Description Source
Viewed on September 11, 2015
Level of coding
full
Note
Partial requirement for: M.S., Arizona State University, 2015
Note type
thesis
Includes bibliographical references (pages 30-32)
Note type
bibliography
Field of study: Bioengineering
System Created
  • 2015-08-17 11:52:41
System Modified
  • 2021-08-30 01:27:33
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information