Description
Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2

Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ transmission electron microscopy (TEM). X-ray diffraction and scanning electron microscopy studies were also performed to understand the phase and morphology of the nanotubes. As prepared TiO2 nanotubes supported on Ti metal substrate were amorphous, during the heat treatment in the ex-situ furnace nanotubes transform to anatase at 450 oC and transformed to rutile when heated to 800 oC. TiO2 nanotubes that were heat treated in an in-situ environmental TEM, transformed to anatase at 400 oC and remain anatase even up to 800 oC. In both ex-situ an in-situ case, the morphology of the nanotubes drastically changed from a continuous tubular structure to aggregates of individual nanoparticles. The difference between the ex-situ an in-situ treatments and their effect on the phase transformation is discussed. Metal doping is one of the effective ways to improve the photocatalytic performance. Several approaches were performed to get metal loading on to the TiO2 nanotubes. Mono-dispersed platinum nanoparticles were deposited on the TiO2 nanopowder and nanotubes using photoreduction method. Photo reduction for Ag and Pt bimetallic nanoparticles were also performed on the TiO2 powders.
Reuse Permissions
  • Downloads
    pdf (15.9 MB)

    Details

    Title
    • Electron Microscopy Study of the Phase Transformation and Metal Functionalization of Titanium Oxide Nanotubes
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • M.S. Materials Science and Engineering 2014

    Machine-readable links