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ABSTRACT 

Titanium oxide (TiO2), an abundant material with high photocatalytic activity and 

chemical stability is an important candidate for photocatalytic applications. The 

photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and 

morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ 

transmission electron microscopy (TEM). X-ray diffraction and scanning electron 

microscopy studies were also performed to understand the phase and morphology of the 

nanotubes. As prepared TiO2 nanotubes supported on Ti metal substrate were amorphous, 

during the heat treatment in the ex-situ furnace nanotubes transform to anatase at 450 oC 

and transformed to rutile when heated to 800 oC. TiO2 nanotubes that were heat treated in 

an in-situ environmental TEM, transformed to anatase at 400 oC and remain anatase even 

up to 800 oC. In both ex-situ an in-situ case, the morphology of the nanotubes drastically 

changed from a continuous tubular structure to aggregates of individual nanoparticles. 

The difference between the ex-situ an in-situ treatments and their effect on the phase 

transformation is discussed. Metal doping is one of the effective ways to improve the 

photocatalytic performance. Several approaches were performed to get metal loading on 

to the TiO2 nanotubes. Mono-dispersed platinum nanoparticles were deposited on the 

TiO2 nanopowder and nanotubes using photoreduction method. Photo reduction for Ag 

and Pt bimetallic nanoparticles were also performed on the TiO2 powders.  
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Chapter1 

INTRODUCTION 

1.1 General background 

1.1.1 Light harvesting to meet the energy crisis 

According to United States Census Bureau1, the world population is growing at a 

rate of 1.2%, or approximately 80 million people per year. With one birth every 8 

seconds and one death every 12 seconds, the world is becoming more populated each 

second. The energy consumption will rise faster by 56% from 524 quadrillion BTU in 

2010 to 820 quadrillion BTU in 20402. Fossil fuels such as petroleum, natural gas, and 

coal will makeup more than 80% of energy sources, but these energy sources remain in 

limited geographies. Fossil fuels generate large quantities of carbon dioxide gas (CO2) 

and other gases, which can upset the atmospheric composition. Nuclear energy does not 

generate CO2 and can be implemented in many regions of the world, but is losing 

popularity, especially in the United States, where no new nuclear power plants have been 

ordered since the Three Mile Island accident in 1979 and no long-term waste storage 

strategy has been implemented.  

Renewable energy is an alternative that is considered to be safe for both the short 

and long terms and scales from portable applications such as small electronics to large 

applications such as automobiles and power plants. Renewable energy such as wind and 

solar energy do not generate CO2. Plants utilize solar energy and use green pigments as 

catalysts. In order to harvest solar energy for human usage successfully, effective 

catalysts are necessary for solar energy based reactions3. Photocatalysis is the field in 

active research of improving and understanding photoreactions and associated catalysts.  
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1.1.2 Photocatalysis (heterogeneous) fundamental 

A photocatalysis process is essentially a photoreaction in the presence of a 

catalyst. Photosynthesis is the classic natural photocatalysis process, where chlorophylls 

are the catalysts. A semiconductor based heterogeneous photocatalysis process is 

composed of three steps: excitation, electron-hole pair creation and oxidation-reduction.  

The first step is excitation; upon suitable light application. In a semiconductor a 

bandgap is available, which is essentially the gap between top of valence band and 

bottom of conduction band. Upon light of enough energy is provided to a semiconductor, 

excitation occurs. 

The second step is electron and/or energy transfer in a deexcitation process. 

Electrons from the occupied level of donor reactant transfers to an unoccupied acceptor 

reactant level. Upon photon excitation, an electron-hole pair is generated which 

recombine unless otherwise other reaction sites are available. The lifetime of such 

recombination is in the order of nanoseconds4. After electron-hole pair creation, 

recombination can occur either inside the volume of the semiconductor or on the surface. 

Alternatively, the electron can travel to find an acceptor on the surface, and a donor may 

find a hole on the surface. 

The final step is the chemical reaction of oxidation and reduction occurring on 

surface. In this step an electron and hole, which reach the catalyst surface, interact with 

redox species to form intermediate or final products. For instance, in a Pt functionalizes 

TiO2 based water splitting reaction, electrons and holes are involved at reduction and 

oxidation steps as represented in the chemical equations5. 
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OH- + h+ ! O2 

H+ + e- ! H2  

The success of acceptor and donor excitation, or in other words, the electron –

hole transfer to the suitable reaction sites, depends on the availability of reaction sites and 

the band gap position with respect to the molecular energy level of the reaction molecule. 

The band edge position of the semiconductor is very important for successful electron 

transfer from conduction band to the redox potential level of the reactant molecule. Fig. 

1.1 presents the relative position of different semiconducting band edges with respect to 

the hydrogen electrode4. These values were obtained in contact with aqueous solution at a 

pH value of 1. For a reduction reaction to be successful, band edge position of the 

reaction species should be situated lower to the band edge of semiconductor. In other 

words, the semiconductor band edge should have more negative reduction potential 

value. 

Apart from the above factors, other factors also influence the success of electronic 

transfer between semiconductor and reactant species, or in other words, the catalytic 

efficiency of the system. These factors include presence of electron traps, surface area 

and size of the catalyst. Surface defects act as shallow electron traps and hence acts as 

holes for capturing electrons before they are available to surface catalysis reactions. By 

annealing the semiconductor catalysts the surface defects are often removed and electron-

hole recombination time is improved6.  

1.1.3 TiO2 

Fujishima and Honda7 discovered the photocatalytic properties of TiO2 electrodes 

for the water splitting reaction in 1972. Ever since, research has been conducted in 
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understanding the fundamental properties of photocatalysis and TiO2. TiO2 is abundant in 

nature, chemically stable, non hazardous in properties, and inexpensive. Hence it has 

become a suitable choice in chemistry, materials science and engineering in catalysis 

research.  In the past decades, TiO2 has seen application in energy storage8,  energy 

renewal9, and environmental cleaning10-12.  

Anatase and rutile are the two common phases of TiO2, with a more rare phase of 

brookite, which is the least, studied among three. Between anatase and rutile, the latter is 

thermodynamically more stable at higher temperature. Both anatase and rutile share a 

tetragonal crystal structure, while the later is a denser one. A few basic physical 

properties of anatase and rutile are summarized in Table 1.112.  

1.1.4 TiO2 nanotubes 

TiO2 nanotubes were initially prepared via a template synthesis route13 around in 

1996 followed by in hydrothermal method14 in 1998. Anodic synthesis was developed 

later around in 2001 by Grimes group.15 In a general TiO2 mediated mechanism, electron 

transport is a significant limiting factor in photocatalysis and is governed and influenced 

by the structural architecture of TiO2. TiO2 nanotubes in particular yield enhanced 

catalytic activity as they provide a larger surface area and shorter electron-hole migration 

paths to the surface compared to other forms of TiO2
16. Hollow TiO2 nanotubes 

demonstrate a superior electron transport and help in improving the catalytic efficiency16. 

TiO2 nanotubes have also wide applications in other areas such as dye sensitized solar 

cells3,17 and gas sensing devices18-19.  
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1.1.5 Improving catalytic efficiency of tubes 

There are methods to improve the catalytic efficiency of TiO2 tubes. 

Metal/nonmetal doping is an effective method to improve the photocatalytic 

performance. Doping may change the band gap20 and in some cases make the material 

active in the visible region21. According to work by Umebayashi et al.20, sulfur doping of 

TiO2 resulted in shifting the band edge to lower energy. Metal functionalization helps in 

trapping electrons, which helps reduce electron-hole pair recombination; this enhances 

the photocatalytic activity. There are different ways to functionalize a catalyst. 

Impregnation is one of the traditional choices22 among wet synthesis methods, in which 

the catalyst is impregnated with desired metal precursor solution followed by drying, 

calcination, and reduction in suitable gas and temperature environments. In gas method, 

chemical vapor deposition is a choice. The limitations of this method are discussed in 

chapter 4.2.2. Photoreduction is another method to functionalize ceramic catalysts. TiO2 

is known to reduce metal ions to their respective elemental metals23-24 using free 

electrons on its surface, in the presence of suitable conditions – light illumination and/or 

chemical environments. Photoreduction method has advantages over other methods 

owing to its simplicity; for example it does not require post reduction treatments as in 

impregnation technique. 

1.2 Scope of thesis 

 Studies have reported on the catalytic performance of the polymorphs of TiO2. 

For example, Kawahara et al.25 reported the oxidation of CH3CHO on anatase-rutile 

bilayer films and found the presence of both phases perform better than the individual 

films. Zhang et al.26 found similar results in the reaction of H2 evolution from 
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water/methanol solution that the anatase-rutile mixture performs better than the 

individual phases. Hurum et al.27 have studied and found similar results on the anatase-

rutile mixture. However, Tanaka et al. 28 reported that anatase is a better catalyst than 

rutile in the reaction of phenol degradation. Since both the morphology as well as the 

phase are critical to the catalytic activity of these nanotubes, it is important to determine 

the conditions where desired phase and morphology can be achieved.  

In order to functionalize TiO2 nanotubes, impregnating and soaking techniques 

have been successfully employed to generate dispersions of Pd particles inside nanotubes 

with a particle size of about 10 nm29. Such techniques also involve calcination and 

reduction heat treatments to convert metal precursor to metal nanoparticles. These 

treatments may change the morphology of the TiO2 tubes because they are not 

structurally stable at higher temperatures, especially in a reducing environment30. 

Sputtering can be effectively used to deposit metal onto the mouths of the tubes but the 

resulting dispersion is not uniform31. Photoreduction is a potential approach for 

functionalizing tubes since it avoids high temperature heat treatments. Ni, Cu and Pt 

nanoparticles have been deposited onto TiO2 powders using a photoreduction process32-34.   

This thesis discusses two major topics - TiO2 nanotubes morphology and phase 

study as well functionalizing with different metals. The third chapter discusses in detail 

how heat treatments transform tubes into different phases and structures. Different 

characterization techniques are employed to understand the relationships of structure with 

treatment environments. The structures are also compared in both ex-situ and in-situ 

transmission electron microscopy (TEM) studies. The fourth chapter focuses on a one 

step Pt metal functionalization of tubes and characterization via scanning transmission 
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electron microscopy (STEM). In chapter five, Ag functionalization as well as some 

bimetallic results are discussed. In an appendix, supplementary results are discussed 

including the photocatalystic performances of tubes and metal functionalized tubes using 

a dye degradation reaction. 

 

Table 1.1 Important physical properties of anatase and rutile phases 

 

Property Anatase Rutile 

Crystal structure Tetragonal Tetragonal 

Space group l4/amd P4
2/m nm 

Atoms per unit cell (z) 4 2 

Lattice parameter (nm) a = 0.3785, c = 0.9514 a = 0.4594, c = 0.2958 

Unit cell volume (nm3) 0.1364 0.0624 

Density (kg m-3) 3894 4250 

Band gap, experimental, 

(eV) 

(nm) 

 

~3.2 

~387 

 

~3.0 

~413 
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FIG. 1.1. Relative band edge positions of semiconductors in aqueous electrolyte at 

pH =1.4 
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CHAPTER 2 

INSTRUMENTATION 

2.1 Introduction 

In this chapter, the techniques used to characterize and study TiO2 nanotubes and 

metal functionalized anatase nanoparticles are described. For surface morphology and 

tube parameters, scanning electron microscopy (SEM) was used. Phases in bulk were 

detected using X-Ray diffraction (XRD) whereas nanosized phases were studied by 

transmission electron microscopy (TEM). Electron energy loss spectroscopy (EELS) was 

used as a confirmatory tool to distinguish between different phases of TiO2. Energy 

dispersive spectroscopy (EDS) was used to detect and quantify metals at the nanolevel in 

the TEM. For in-situ experiments of TiO2 tubes, environmental TEM was used. 

Chemically sensitive imaging was performed with scanning transmission electron 

microscopy (STEM). 

2.2 X-Ray diffraction 

X-ray diffraction is a very useful tool for identification and study of crystallinity 

in solids1,2. X-rays are generated when high energy charged particle, e.g. electrons collide 

with matter. High energy electrons are capable of knocking out the inner shell electron 

that creates a hole. An outer shell electron fills the hole and by doing so the energy 

difference between the two states is dissipated as radiation known as X-ray. Depending 

on the states involved, the nomenclature for X-ray is decided. For example, 2p! 1s 

transition gives a K! line whereas a 3p! 1s transition results in K" X-ray. The energy 

associated with each X-ray is a characteristic value for a particular element. In XRD, we 

use a single characteristic wavelength to form the X-ray beam, such as Cu K!. The X-ray 
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beam is directed onto the sample and we measure the angles the beam is scattered 

through as it passes through a sample. 

Single and polycrystalline materials have a regularly repeating pattern of atoms. 

When a radiation has similar wavelength as the interatomic separation in a crystal, the 

crystal can act just as an optical grating and diffract radiation. The diffraction of X-rays 

by a crystal can be understood by Bragg’s equation. Braggs’s equation is expressed as  

n! = 2dSin# 

where, n= integer number 

!= wavelength of X-ray 

d= interplanar distance 

#= angle of diffraction 

For a certain type of crystal system the pattern of diffraction is unique. Two important 

phenomena govern such unique pattern. (A) Systematically absent reflection (B) Intensity 

of peaks. (A) The peaks obtained from X-ray diffraction are from several set of planes. 

Sometime a certain set of plane in a certain crystal system gives zero intensity i.e. the 

peak is absent. For example for a body centered cubic crystal, the signal for (100) plane is 

absent because at the Bragg’s angle for (100) planes, the body center atom which lie 

midway between adjacent (100) planes diffract X-ray exactly 180° out of phase relative 

to the corner atoms on the (100) plane. The interference of diffracted waves is destructive 

and no signal is detected. On the other hand, strong peak is found for (200) planes for bcc 

type due to constructive interference of waves out of adjacent planes. (B) Intensity of a 

peak depends on the density of the atoms present in the corresponding plane. The 
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intensity of the reflection is higher when more atoms are present, which diffract the X-

ray. 

Figure 2.1 shows important components of a powder diffractometer. It consists of 

a source for X-ray (generally Cu K! radiation of wavelength = 0.154 nm is used). The 

incident beam of X-ray passes through a filter to fall on the sample placed on a 

goniometer (sample stage). The diffracted beam is recorded as the sample is rotated. 

During a continuous scan, both source and detector are driven at constant angular 

velocity though increasing value of # and hence the source and the detector move at 

angle 2# relative to one another. For a step scan the angular step size and time duration 

of each movement source and detector can be set. In each case, the detector finally plots a 

graph between intensity and angle of diffraction.  

2.3 Transmission electron microscope 

Transmission electron microscopy (TEM) is an important tool for characterizing 

nanomaterials3,4,5. In TEM, an electron beam of 100 - 400 keV energy is incident on a 

thin, electron transparent sample placed in the vacuum chamber of the instrument. The 

electron beam impinges the sample using parallel illumination to form a magnified image 

with electromagnetic lenses. Electrons are emitted from the tip of a Schottky field emitter 

and accelerated to the incident beam energy. The condenser lenses in conjunction with a 

condenser aperture control the beam spread on the sample and also control the 

convergence angle and beam current onto the specimen. The specimen sits inside a twin 

objective lens. The first lens after the specimen is the imaging lens and is often called the 

objective lens. The next lens is the diffraction or intermediate lens, which switches its 

focal point to the imaging plane of the objective lens or the back focal plane of the 
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objective lens, where the diffraction pattern lies. The last 3-4 lenses are known as 

intermediate and projector lenses. These lenses magnify the image or diffraction pattern 

to a convenient magnification for the screen or other detectors such as the CCD3. Several 

apertures lie below the specimen. The objective aperture is used to select diffraction 

beams that contribute to the image. The selected area aperture is used to select an 

imaging region that contributes to a diffraction pattern. 

Several signals generated from the electron sample interaction can be used to 

form an image, diffraction pattern and spectroscopy analysis. The transmitted and Bragg 

scattered electrons are collected for conventional imaging techniques such as bright field 

(BF TEM), dark field (DF TEM), and electron diffraction3. If both the transmitted and 

Bragg scattered beams are collected in imaging mode with a parallel beam, this is 

referred to as phase contrast imaging or high resolution transmission electron microscopy 

(HRTEM)3. Images obtained in both BF TEM and HRTEM images are discussed in this 

thesis. Inelastic scattered electrons and x-rays can be used for electron energy loss 

spectroscopy (EELS) and energy dispersive x-ray spectroscopy (EDS).  

The final imaging technique we utilized is annular dark field scanning 

transmission electron microscopy (ADF STEM). In ADF STEM, a focused convergent 

beam with a semi-angle of ~10 mrad is scanned on a TEM transparent sample3,5. The 

transmitted and Bragg scattered beams are passed through the hole of the annular dark 

field detector while the high angle (> 50 mrad) incoherently scattered electrons are 

collected on the ring detector. This is often referred to as high angle annular dark field 

(HAADF) STEM3,5. Since all of the characteristic Bragg scattered beams are not 

collected, there is little diffraction contrast in the image. Instead, the contrast is 
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chemically sensitive and depends on the average atomic number of the specimen. Heavy 

atomic columns scatter stronger, and appear bright white on a HAADF STEM image, 

whereas light atomic columns such as carbon or oxygen are nearly invisible or black in 

images. HAADF STEM was used to obtain images of metal supported TiO2 catalyst, 

which will be discussed later in this thesis. Figure 2.2 shows a schematic diagram and 

photograph of a JEOL 2010F TEM/STEM used in this thesis. 

2.3.1 Energy dispersive x-ray spectroscopy 

X-rays generated from the electron-specimen interaction are collected in energy 

dispersive x-ray spectroscopy (EDS) which contain chemical information of the 

sample3,6. An incident electron can ionizes the atom by removing one of the bound 

electrons leaving the atom in an excited state. For example, consider a K-shell electron 

which is removed by the incident electron; this will leave a vacancy in the K-shell.  The 

ion can lower its energy by filling the vacancy with an electron from the outer shell and 

the excess energy is radiated as a characteristic X-ray. This characteristic X-ray energy is 

unique to the specific atom, which can be used to identify the elements present in the 

sample. The main component of the EDX is the x-ray detection unit, which is made of 

semiconductor material. X-rays from the sample hit the detector generating electron-hole 

pairs; the number of electron-hole pairs generated is proportional to the energy of the x-

rays. The number of electron-hole pairs is detected by the detector and converted into a 

signal. The detector is cooled to liquid nitrogen temperature to deactivate the electron-

hole pair generation due to thermal energy; this will help in keeping the noise levels very 

low while detecting the x-ray signal. 
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EDX can detect all the elements with an atomic number greater than 4. EDX can 

be used for both qualitative and quantitative analysis. The position of the peak on the 

energy scale can be used to identify the elements present in the sample. Quantitative 

analysis in EDX can be performed using Cliff-Lorimer equation. For example, the 

elemental ratio in a bimetallic nanoparticle can be used by using the following Cliff-

Lorimer equation, 

CA/CB = k * IA/IB 

where CA and CB are the concentrations of elements A and B respectively in the sample 

and IA and IB are the intensities of the characteristic peaks from elements A and B 

respectively. ‘k’ is a sensitivity factor that depends on the atomic number correction 

factor, x-ray absorption within the sample, and x-ray fluorescence within the sample.  

2.3.2 Electron energy loss spectroscopy 

Electron energy loss spectroscopy (EELS) measures the energy lost to beam 

electrons though inelastic scattering events as they transmit through a specimen3,7. A 

small fraction of the inelastic losses are characteristic, especially when the beam electron 

transfers energy to the core level electrons. These core level electrons are promoted to 

higher unoccupied states. These measured losses are called core loss electrons and often 

contain characteristic features in the edges called energy loss near edge structure. EELS 

measures the density of unoccupied states Making EELS sensitive to the bonding states 

and structure of the material sampled. Most spectra in the TEM are measured over the 

range from 0 eV to ~2000 eV energy loss. The scattering cross section for losses greater 

than ~2000 eV is very low and the ability for current detectors to distinguish these losses 

from noise in the detector is low, despite the high collection efficiency due to the forward 
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scattering nature. Most EELS research focuses on elements within the first row of 

transition metals or lighter on the periodic table of elements, while EDS or other tools 

such as RBS and XPS may detect heavier elements. The energy resolution of EELS is 

depends on the electron source, stability of high tension and the microscope, and the 

number of pixels available on the CCD detector. For most cases, the energy resolution is 

approximately 1 eV. In contrast to EDS, the energy resolution is two orders of magnitude 

greater. The energy resolution of EELS can be improved by using a microscope with a 

cold field emission gun and/or an electron monochromator. 

2.4 In-situ environmental transmission electron spectroscopy  

    In-situ environmental TEM (ETEM) is a powerful tool to study the gas-solid 

interactions at the nanoscale8. It helps in studying the real time changes taking place in 

the catalyst or supported metal catalysts under reactive gas conditions.  This kind of 

information provides fundamental insights into phase transformation and metal support 

interactions. In-situ ETEM experiments were performed in an FEI Tecnai F20 field 

emission TEM operating at 200kV with a point resolution of 0.24 nm and an information 

limit of 0.14 nm. This instrument is capable of performing both TEM and STEM under 

reacting gas conditions. It is equipped with Gatan imaging filter, this allows us to follow 

in-situ nanoscale chemical changes using electron energy loss spectroscopy.  

Figure 2.3, shows the external gas handling system connected to the TEM. The 

gas handling system consists of a mixing tank, from which gas flows along a stainless 

tube and a leak valve is used to control the amount of gas flowing into the microscope 

column. A mixing tank allows gases of arbitrary composition to be mixed from up to 4 

different gases. Air used in our experiments is of 99.999% purity.  
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This microscope is equipped with a differential pumping system for holding gas 

pressures near the sample region of the microscope and at the same time protects the 

electron gun from damage because of exposure to high gas pressures. Figure 2.13 shows 

the schematic of the differential pumping system, this system is capable of handling gas 

pressures of up to 8 Torr. Gas is introduced in the sample area through the leak valve and 

the escape rate into the rest of the TEM column is restricted by small differential 

pumping apertures of 100 µm in size. Gas leaked through these apertures is pumped 

using a turbo molecular pump (1st level of pumping) and a molecular drag pump (2nd 

level of pumping). The small opening of the differential pumping apertures helps in 

holding high gas pressures near the sample region of the microscope. 

Heating the samples was performed using a Gatan heating holder with a furnace body 

made of inconel. This holder is capable of going up to 900oC in vacuum and the 

maximum temperature it can go in presence of gases depends on the type of gas and its 

pressure. The heating holder is equipped with thermocouple to read the instant 

temperature of the furnace. It is also equipped with a water cooling system to keep the 

temperature low at the O-ring region when the furnace is heated to temperatures above 

500oC. Temperature of the holder is adjusted by changing the current flow into the 

furnace. The error in determining local sample temperature was +/- 25oC.  

TEM samples for in-situ ETEM experiments were prepared by gently crushing the 

catalyst sample between glass microscope slides and dispersing them onto a platinum (Pt) 

grid. Pt grids were chosen because of its chemical inertness even at high temperatures. 

The operating temperatures are well below the Tamman temperature of Pt, this keeps the 

diffusion of Pt atoms extremely low and likelihood of Pt interacting with the sample is 
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very small. To make sure the platinum grid is placed firmly onto the holder, two inconel 

washers were used on both sides of the grid and tightened with a hexring, both washers 

and the hexring are made of inconel.  

2.5 Scanning Electron Microscopy  

SEM is used to capture topological images of samples. Time consuming sample 

preparation is not needed while working with SEM. Larger and multiple samples can be 

placed on the sample stage compared to TEM. A SEM is composed of an electron 

column, scanning deflectors, several imaging detectors, and a control console. A SEM is 

similar to a STEM, except we collect reflected electrons rather than transmitted electrons, 

and there are no post-specimen lenses. Additionally, a SEM is operated at lower voltages 

of 1-30 keV typically, which increase the number of electron-sample interactions.  The 

electron column contains an electron source, either a tungsten filament, lanthanum 

hexaboride (LaB6) filament, or field emission source, and condenser lenses with 

deflectors to control the beam size and raster position. The control console has viewing 

screen and adjustment knobs such as brightness, contrast and astigmatism. A SEM 

collects secondary or backscattered electrons. Secondary electrons are emitted from the 

sample surface when beam electrons experience inelastic scattering events and eject low 

energy electrons. Backscattered electrons are those beam electrons that elastically reflect 

from the sample. Backscattered images have phase contrast and atomic number contrast. 

The area of interest in sample is scanned in lines by the beam controlled by a pair of 

deflectors. The magnification of the image is the ratio between length of the area 

projected on the screen to the length of the actual area scanned. When point to point 

electronic beam to sample interaction varies, contrast arises and thus the image is created. 
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The signal is created by the sample - electron interaction is accumulated by a detector, 

where the electrons are amplified by photomultiplier to be viewed on a cathode ray tube.  

A schematic diagram of a SEM is shown in Figure 2.4. 

 

 

Figure 2.1. Schematic diagram9 of a X-ray diffractometer. An electron beam hits a Cu 

source and generates X-rays. The X-rays are directed to a rotating sample, and the angles 

of diffracted intensity are recorded.  
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Figure: 2.2 (a) Schematic diagram10 of a TEM/STEM including electron source, 

electromagnetic lenses, detectors, and EELS spectrometer. The sample sits inside the 

objective lens. (b) Photograph of a JEOL 2010F TEM/STEM11 used in this thesis. 
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Figure 2.3. Schematic diagram12 of differential pumping system in a TEM sample 

chamber.  
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FIG. 2.4 Schematic diagram6 of SEM. Secondary and backscattered electrons are 

collected to form images.  
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Chapter 3 

TiO2 NANOTUBES SYNTHESIS, PHASE AND MORPHOLOGY STUDY 

3. 1 Introduction  

TiO2 is an important photocatalyst that has attracted much attention for four decades. 

TiO2 nanotubes in particular may yield enhanced catalytic activity as they provide a 

larger surface area and shorter electron-hole migration paths to the surface compared to 

other forms of TiO2
1. Anatase and rutile are two primary polymorphs, of which rutile is 

thermodynamically more stable in bulk form. Different phases and morphologies perform 

catalytically differently, which is discussed in chapter 1. In this chapter, we are 

discussing our work on phase and morphology study. 

Phase transformation was studied in different forms of TiO2 such as nanoparticles and 

nanotubes under different temperatures and gas environments2-7. In most of these works, 

X-ray diffraction (XRD) has been used as a major tool to identify the phases in the 

nanotubes. XRD provides the crystal structure averaged over a large number of 

nanotubes but does not yield information about the morphology. Here we employ both 

ex-situ and in-situ transmission electron microscopy (TEM) in addition to XRD and 

scanning electron microscopy techniques to determine structural and morphological 

evolution during thermally induced phase transformation in nanotubes.  

While ex-situ studies yield information about phase and morphology of the tubes after 

heat treatments, in-situ TEM studies yield dynamic structural information of the tubes 

during the heat treatment. In this chapter, we have compared the morphology of in-situ 

with ex-situ experiments and analyzed the anatase to rutile transformation.  
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3.2 Tube preparation and formation Mechanism 

Nanotubes were synthesized using an anodization technique, which involves an oxidation 

process followed by selective etching.  Two types of tubes were synthesized - supported 

and freestanding as described below. 

The supported nanotubes or aligned TiO2 nanotube arrays supported on Ti metal were 

synthesized using an anodization method starting with a Ti foil (99.98% pure, Sigma 

Aldrich). Prior to tube synthesis, the Ti foil was mechanically polished followed by 

cleaning in acetone and ethyl alcohol. Aligned TiO2 nanotubes were synthesized by 

anodization of Ti foils at 20 V for 5 hours in fluoride mediated ethylene glycol solvent, 

using a Pt foil as cathode. For a typical anodization experiment, 0.195 g of NH4F was 

dissolved in 75 mL ethylene glycol solvent mixed with 3 mL of water. The experiment 

was conducted at constant voltage at room temperature. The as synthesized tubes were 

cleaned in deionized water to remove residual solvents. The supported tubes are open at 

one end with the other end terminating in the Ti metal foil.  

To prepare freestanding nanotubes, thinner Ti foil was used of 12 µm thickness.  

Identical chemical composition and amounts were employed to synthesize the tube as 

above. A synthesis voltage of 60 V was applied in this reaction using the same chemicals 

for the electrochemical reaction. The reaction time was 5 hours and in this case the entire 

foil was etched, resulting in free standing tubes without any Ti metal support as seen in 

SEM images. 

Several differences were observed between supported and freestanding nanotubes. The 

average diameter of the supported tubes was 40 nm, whereas the average diameter of the 

freestanding tubes was 100 nm (Figure 3.1a through 1d). The supported tubes were more 
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uniform in diameter and each tube was surrounded by an average of 6 tubes in an 

approximately hexagonal pattern with regularly occurring voids in between. The 

freestanding arrays of tubes are each surrounded by on average of 5 or 6 tubes with 

occasional voids between the tubes. The average length of the supported tubes and 

freestanding tubes are 2 µm and 12 µm, respectively. Supported tubes are closed at one 

end by Ti metal. Figure 3.2 shows a view along the supported tube length acquired in 

SEM. Length of the nanotubes was measured to be about 2 µm as seen in Figure.  

The mechanism of tube formations via anodization process has been discussed in various 

literatures6-10. The oxidation process is initiated by reaction of the Ti4+ ion with O2- ion in 

electrolyte. The fluoride ion present in the solution is responsible for selective dissolution 

of the oxide into the solution leaving the bare metal exposed for further oxidation. The 

two steps take place simultaneously to form the tube. The overall mechanism or the net 

reaction is expressed in the following set of chemical equations.  

  Ti (s) + 2H2O (l) !  TiO2 (s) + 4H+ + 4e-                                           (1) 

  TiO2 (s) + 6F- + 4H+ !  TiF6
2- (aq)+ 2H2O   (2) 

Process (1) involves formation of oxide due to interaction of Ti metal surface with 

negative oxide ion from solution. In this process the anions move further towards 

metal/oxide surface while Ti4+ moves towards oxide/solution surface from metal.  In the 

second step (2) two different processes help dissolving TiO2. Field assisted and chemical 

(due to F anion) dissolution, out of which the former is dominating in initial phase11 since 

a large electric field is created around the initially formed oxide layer. This leads to 

localized small pit formation. These pits grow into pores by moving down the layers. 

Both oxide formation and dissolution process occur at equal speed eventually, forming 
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well defined hexagonally patterned tubes. Hence the uniform tube formation is a time 

dependent evolution process. Each stage of the tube formation has been studied by SEM 

by Mor et al10. 

3.3   Synthesis parameters and their effect  
 
To improve the nanotube qualities in terms of unidirectionality and uniformity of tube 

height, several experimental parameters were varied during the synthesis process.  

 
3.3.1   Polishing 
 
Polishing the Ti foil helped TiO2 nanotubes grown more continuously on a smooth 

surface and the tubes were more uniform in terms of height and uniformity. The tubes 

synthesized on polished foil had a smoother surface, which yielded a more uniform 

electric field distribution over the metal surface12.  Mechanical polishing was performed 

on the Ti metal foils. In a typical polishing procedure, a foil was polished on coarser to 

finer sand papers.  

 
3.3.2   Voltage 
 
The effect of voltage has been studied in nanotube formation, it has been seen that the 

tubes are of higher diameter and thickness when the working voltage is increased as 

shown in Table 3.1. It has been also studied13 that the time taken for tube formation from 

stage of pore formation to tube formation as discussed in previous section is dependent 

on working voltage. As the working voltage increased, the time decreases.  

 
3.3.3   Amount of etching agent  
 
Varying the concentration of the fluoride ion was employed in order to determine the 

effect on the quality of the tubes. As shown in Figure 3.3, very high concentration of the 
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fluoride in solution makes the reaction more aggressive and oes not help the tubes to 

grow in a regular fashion13.  

 
 3.3.4   Choice of conditions for nanotube synthesis 
 
A voltage of 60 Vwas maintained throughout the growth on 0.25 mm thickness foil. For 

the thicker foil, 20V was determined as the best working condition. Different voltages 

were applied to synthesize tubes of various parameters and are summarized in Table 3.1  

 
 
3.4 Phase and morphology study  
 
3.4.1 Ex-situ study of transformations of tubes upon annealing 

The as-prepared tubes are well aligned in one direction and have a narrow distribution of 

tube diameters with an average value of approximately 100 nm. Figure 3.4 (b-d) shows 

SEM images of tubes annealed ex-situ in one atmosphere of air for 2 hours at 450, 600, 

and 800 °C respectively. 

The tubes annealed at 450 °C appear to be intact, however at 600 °C the tubes are less 

well defined and the morphology suggest signs of damage to the tubular structure.  By 

800 oC there is no tubular structure observed in the SEM image.  

Figure 3.5 shows XRD data of the tubes annealed at different temperatures. Peaks are 

labeled as A, R and T for anatase, rutile and titanium metal (from the Ti substrate used 

for anodization) respectively. The as-prepared tubes are amorphous and only the Ti signal 

was seen coming from the underlying metal substrate, whereas the tubes annealed at 280 

oC and 450 oC are predominantly anatase. Both anatase and rutile phases exist at 600 oC 

and complete transformation to rutile takes place at 800 oC. To obtain information on 

amorphous and crystalline domains in different areas, transmission electron microscopy 
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was performed on nanotubes that were annealed at 280 oC for 2 hours and 8 hours. A 

representative high resolution TEM image of a TiO2 nanotube annealed at 280 oC is 

shown in figure 3.6a along with the Fast Fourier transform (FFT) from two selected 

regions of the image. FFT’s from two regions show that the nanotube consists of both 

amorphous and crystalline structures.  Figure 3.6b and 3.6c show the magnified areas 

from figure 3.6a. Figure 3.6b shows the characteristic salt and pepper contrast indicative 

of amorphous structure. Figure 3.6c shows lattice fringes indicating crystallinity in this 

region and the lattice spacing was measured to be 0.35 nm that matches with the anatase 

(101) d-spacing. Thus for this sample the TEM images show that amorphous regions are 

mixed with crystalline regions at the nanometer level. Figure 3.6d shows a corresponding 

selected area diffraction pattern taken from the same group of tubes.  The pattern shows a 

small number of Bragg reflections in addition to several diffuse rings. This indicates the 

presence of a few crystalline grains embedded in an amorphous matrix. (The selected 

area aperture was placed over areas, which did not include the amorphous carbon support 

film in order to avoid the overlap).  

Figure 3.7 shows a TEM image of a nanotube that was annealed ex-situ at 450 oC. The 

TEM image shows a quasi-facetted void structure in the tube wall. The TEM image is 

consistent with the SEM image of Figure 3.4b but the TEM analysis shows that the tube 

morphology has undergone significant disruption. While the facets are not perfectly 

straight they are not random and the angle between the planes making up the sides of the 

void is approximately 120o.  The lattice plane parallel to one side of the void has a  

spacing of 2.36 Å, which matches the (112) planes of anatase. For anatase, the other 
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primary plane making an angle of 119o with respect to the (112) are the (004) planes. 

Thus the voids are composed of (112) and (004) rough facets.   

Upon analyzing the high-resolution images of tubes annealed at 450 oC, it was noticed 

that there were small domains of rutile along with anatase as shown in figure 3.8 (a). 

Figure 3.8(b) is an FFT acquired from this image showing diffraction spots 

corresponding to anatase (101) and rutile (110) planes. Figure 3.8(c) shows overlaid and 

colorized digital dark-field images obtained by selecting only the anatase or rutile 

reflections and performing an inverse Fourier transform.  The average size of such rutile 

domains was found to be 12 nm.  Figure 3.8(e) is the selected area electron diffraction 

pattern which also shows the rutile (110) reflection in addition to the anatase reflections.  

There is a 10% increase in the density between anatase and rutile (density of anatase and 

rutile are 3894 and 4250 kgm-3 respectively), which would impose substantial stress on 

the nanotube structure during the phase transformation contributing to destabilization and 

destruction of the tubular structure.  In the work by Fang et al14 they reported a shortening 

of the tube length upon annealing to 600 oC due to the anatase-to-rutile transformation 

and resulting density increase. They also showed TEM images, though not discussed in 

detail, with faceted voids formation in the tube walls after annealing at 450 oC.  

 

3.4.2 In-situ transformations 

In-situ heating was performed in the ETEM to understand the mechanism for the 

morphological and structural changes with temperature. Figure 3.9 (a-e) shows the in-situ 

ETEM images of nanotubes in the presence of 1 Torr of air heated from room 

temperature to 650 oC.  Two arrows are guides to follow the morphological evolution of 
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the nanotube surface with respect to temperature. The nanotube has a single continuous 

wall at room temperature, and no significant change was observed up to 450 oC. At 550 

oC, the surface of the nanotubes becomes rough and the dark line associated with the 

inner wall of the tubes shows discontinuities at certain places indicating that the tube 

structure is starting to disintegrate. By 650 oC, the nanotube wall was no longer 

continuous and was composed of nanoparticles 30-60 nm in size. These nanoparticles 

appeared to nucleate along the length of the tube and essentially consume the wall 

material during the disintegration.   

The nanotube morphology was monitored up to 800 oC. Figure 3.10a shows an in-situ 

TEM image of the TiO2 nanotube heated to 800 oC in 1 Torr of air.  From the image it is 

clear that the nanotube was completely transformed to nanoparticles 50-100 nm in size. 

There is some residual directionality in the alignment of the nanoparticles along the 

original tube direction but the tube structure is completely destroyed. Figure 3.10b shows 

a TEM image of the TiO2 nanotubes at 800 oC in the presence of 1 Torr of air. The lattice 

spacing was measured to be 0.35 nm, which corresponds to anatase (101). No grains of 

rutile were observed at 800 oC throughout the specimen. Figure 3.10c is the in-situ 

electron diffraction taken at 800oC in 1 Torr of air, which also shows that the diffraction 

pattern matches with that of anatase. This is in contrast to our ex-situ experiments 

performed at 760 Torr air, in which grains of rutile formed at 600 oC and the sample was 

completely transformed to rutile by 800oC.  

Electron energy-loss spectroscopy (EELS) was also acquired to confirm the identification 

of different phases of tubes. The fine structure in the oxygen K-edge is sensitive to 

electronic structure in TiO2 polymorphs, which can be used to identify the phase of the 
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TiO2
15. EELS spectra were acquired from synthesized tubes that are purely amorphous, 

and the annealed tubes with mixed phases of anatase and amorphous. EELS reference 

spectra were also acquired from commercially available anatase and rutile powders. 

Figure 3.11 shows the O K-edge EELS spectra from different TiO2 nanotubes and the 

reference titanias , which matched those available in literature19. Figure 3.12, shows the 

O K-edge from TiO2 nanotube in the presence of 1 Torr of air at 800 oC. The energy-loss 

spectrum clearly matches with that of the anatase structure (shown in figure 3.11) and 

this once again confirms that the nanoparticles are anatase.  

To validate the in situ experiments, we also performed ex-situ heating on unsupported 

nanotubes to determine if the low oxygen pressure or Pt grid material for the in situ 

experiment influenced the structural evolution of the tubes. Figure 3.13 shows an 

HRTEM image, SAD pattern, along with an energy-loss spectrum (Figure 3.14) recorded 

from unsupported nanotubes heated in air to 800 oC and then transferred to the 

microscope for observation at room temperature. A plane spacing from HRTEM and 

SAD was measured to be 0.35 nm corresponding to the (101) Miller planes of anatase.  

Moreover, the near edge structure of the oxygen K-edge in the EELS matches the anatase 

phase. This ex situ experiment proves that the Pt grid material did not influence the in situ 

experiment and that changing the oxygen partial pressure from 0.2 – 160 Torr does not 

significantly influence the phase transformation.   

It was interesting to see the predominant anatase phase in unsupported nanotubes at 800 

oC during the in-situ and ex-situ heating in air. These experiments show that anatase is  

retained up to 800 oC over a significant range of oxygen partial pressure.  However, when 

nanotubes are supported however they transform to rutile at approximately 450 oC. It has 
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been reported that the anatase to rutile transformation in TiO2 depends on the annealing 

environment conditions including annealing temperature, and presence of dopants present 

in TiO2.16 In one hypothesis, the transformation is facilitated by the density of oxygen 

vacancies in the initial anatase. Since the anatase to rutile transformation is 

reconstructive16, which involves bond breaking and reforming, the relaxation of the 

oxygen sublattice due to oxygen vacancies reduces the overall structural rigidity and 

hence facilitates the anatase-to-rutile transformation17-18.  In our case, the oxygen partial 

pressure for the ex-situ experiment is 160 Torr compared to 0.21 Torr for the in-situ 

experiment. If the lower oxygen partial pressure resulted in a significant increase the 

concentration of oxygen vacancies in the anatase it should trigger the rutile phase 

transformation at lower temperature. We observe the opposite behavior suggesting that 

the pressure difference is not the origin for the differences observed between the in-situ 

unsupported tubes and ex-situ supported tubes results.   

There have been considerable variations in the reported phase stability of anatase during 

thermal treatments of titania nanotubes. Recent work by Fang showed that supported and 

unsupported tubes behave very differently during thermal treatment14. For titania 

nanotubes supported on titanium metal substrate, they found that annealing at 450 oC 

gave predominantly anatase and annealing at 750 oC gave rutile. This is consistent with 

our ex-situ observation showing the onset or rutile formation at 450 oC and complete 

transformation to rutile by 800 oC.  For unsupported tubes they found that anatase was the 

stable phase up to 800 oC and that the transformation to rutile took place at 900 oC. Again 

this is also in agreement with our observations. To prepare the TEM sample, we 

effectively scrape the titania nanotubes off the titanium metal substrate. This means the 
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nanotubes in the ETEM experiment are unsupported. Our observation is that they remain 

anatase even up to 800 oC in agreement with the work of Fang. Other groups have 

recently observed a suppression of the anatase to rutile phase transformation on 

unsupported titania nanotubes19. 

The issue of the thermodynamic origins of anatase phase stability in nanoscale titania has 

been explored by several authors over the last decade.  While bulk thermodynamics 

shows that rutile is the more stable phase, for nanomaterials the contribution of the 

surface energy has to be taken into account to give a correct description of the 

thermodynamic behavior. The surface energy of anatase was found to be much lower 

than that of rutile for spherical particles less than 66 nm and thermodynamic calculations 

suggest that anatase should be more stable than rutile. In our case, the nanotube wall 

thickness is around 10 nm so certainly the low surface energy of the anatase tube will 

inhibit the phase transformation to rutile at lower temperature before significant 

coarsening occurs. By 800 oC, most of the tube wall has been destroyed and replaced 

with nanoparticles of titania which have undergone significant coarsening and are in the 

size range 50-100 nm.  Further heating would result in additional coarsening and 

eventually the difference in free energy of the bulk phases will dominate the energetics 

and these larger nanoparticles will transform to rutile.  

For the supported nanotubes (in this case the nanotubes that were heat treated under ex-

situ conditions), the phase change is believed to occur at lower temperature because of 

the influence of the metal/ceramic interface on the local oxygen vacancy concentration. 

Rutile seems to form more easily at the base of the nanotube that is in contact with the Ti 

metal substrate20. These rutile crystals grow during annealing and consume the larger 
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anatase crystals. During annealing, the anatase crystallites in the walls of the tube coarsen 

and the difference in energy between the anatase and rutile phases becomes less. When 

the anatase crystal comes into contact with the rutile crystal they get consumed. For the 

unsupported tubes (in this case the nanotubes that were heat treated under in-situ 

conditions), TiO2/Ti interface is absent in this case and the rutile nucleation is inhibited 

which explains the absence of rutile phase even at 800 oC in case of in-situ heat 

treatment.  

 

3.5  Summary 

Ex-situ and in-situ TEM studies were performed on TiO2 nanotubes synthesized via an 

anodization method. The effect of heat treatment on both the phase and morphology was 

investigated under different conditions. From the ex-situ studies, the amorphous 

nanotubes start to transform to anatase at 280 oC in the presence of 1 atm. At 450 oC, 

XRD data showed the tubes to be predominantly anatase, however from the high-

resolution TEM analysis, small domains of rutile were observed in addition to the 

anatase. Complete transformation of anatase to rutile took place at 800 oC. In contrast to 

ex-situ data, in-situ TEM studies (in the presence of 1 Torr of air) did not show any 

formation of rutile even at 800 oC. In ex-situ heat treatment, the nanotubes were 

supported on the Ti foil and the presence of the metal/ceramic interface influenced the 

local oxygen vacancy concentration facilitating the formation of rutile phase. In in-situ 

heat treatment, the nanotubes are free standing and do not form the rutile phase. In both 

cases, the morphology of the nanotubes changes drastically from a tubular structure to 

tubular aggregates of individual nanoparticles. For the supported tube, morphology 
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change was initiated by the formation of rutile followed by coarsening whereas for the 

unsupported tubes, coarsening (to lower the surface energy) was the main mechanism for 

tube destruction. 

Table 3.1 Influence of voltage on TiO2 tube parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied 
Voltage (V) 

Inner Tube 
Diameter  (nm) 

Outer Tube 
Diameter (nm) 

Wall Thickness 
(nm) 

10 28 44 8 

20 46 79 16 

40 100 140 20 

60 117 163 23 

FIG. 3.1. SEM images of (a) supported TiO2 nanotubes showing the 
open end (b) closed end of the same tubes after removal from the Ti 
metal support (c) one end of the free standing tubes (d) other end of the 
free standing tubes. 
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FIG. 3.2. SEM image of TiO2 nanotubes showing the length of the nanotubes  
of about 2 micron. 

FIG. 3.3. SEM image of TiO2 nanotubes grown in excess etching agent, 
showing tubes grown in random direction. 
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FIG. 3.4. SEM images of (a) as-prepared TiO2 nanotubes, tubes heat treated  
at (b) 450 oC

 
, (c) 600 oC

 
 (d) 800 oC   

FIG. 3.5. X-ray diffraction from as-prepared nanotubes and the tubes 
annealed at different temperatures. 



! (%!

 

 

 

 

FIG. 3.6. (a) TEM image of nanotubes annealed at 280 °C for 2 hours showing 
amorphous regions in panel (b) crystalline anatase phase in panel (c) and (d) 
corresponding electron diffraction pattern, (101) plane = 0.35 nm d spacing. 
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FIG. 3.8 (a) High resolution TEM image of tube annealed at 450 oC (b) FFT from the 
image (c) Colorized presentation of selected area - blue represents anatase and red the 
rutile phase (d) original image of colorized version (e) representative selected electron 
diffraction of tubes annealed at 450 oC, showing anatase reflections (101), (004) 
corresponding to d-spacings 0.35 and 0.23 nm; rutile reflections (110) and (200) 
corresponding to 0.32 and 0.22 nm respectively. 
 

FIG. 3.7. Ex-situ TEM image of TiO2 nanotube after annealing at 450 oC (a) at low 
magnification (b) showing the presence of faceted voids in the TiO2 nanotube.  
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                                   FIG. 3.8 (c) through (e) 
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FIG. 3.9. In-situ TEM image of the evolution of nanotubes with increase in 
temperature, (a) room (b) 280 oC (c) 450 oC (d) 550 oC and (e) 650 oC 
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FIG. 3.10. (a) In-situ TEM image of the nanotube at 800 oC. (b) Representative 
HRTEM image of several grains and (c) corresponding electron diffraction 
showing anatase reflections (101), (004), (200) and (105) corresponding to d-
spacings 0.35, 0.23, 0.18 and 0.16 nm respectively. 
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FIG. 3.11. Electron energy-loss spectra showing the O K-edge from different TiO2 
phases. 

FIG. 3.12. In-situ electron energy-loss spectrum from TiO2 nanoparticles in the presence of 1 

Torr of air at 800 
o
C.  
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FIG. 3.14. Electron energy-loss spectrum from  TiO2 nanoparticles that was formed after heat 

treating unsupported TiO2 nanotubes at 800
o
C under ex-situ conditions. 

FIG. 3.13. (a) High-resolution TEM image TiO2 nanoparticles that was formed after 

heat treating unsupported TiO2 nanotubes at 800
o
C under ex-situ conditions. (b) and 

(c) showing the zoomed in image and the corresponding FFT showing the anatase 
reflections (101), (103) and (105) corresponding to d-spacings 0.35, 0.24 and 0.16 nm 
respectively. 
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Chapter 4 

METAL FUNCTIONALIZATION OF TiO2 NANOTUBE 

4.1       Introduction 
 

Metal nanoparticles have been loaded on TiO2 powders and other supports for catalytic 

applications1-2 but efficient functionalization of tubes with nanoparticles is challenging 

because of the tube shape and stability. For photocatalytic applications, the tubes should 

ideally be functionalized with a uniform distribution of small metal particles along a 

length comparable to the light penetration depth. As discussed in chapter 1, 

photoreduction is a suitable technique for functionalization to avoid post heat treatments.!

Among different metals photodeposition experiments; Ag, Au, Rh, Pt metals were 

deposited on supports such as powders3-8, rods9-10, substrate11, wire12, and colloids13. 

Again, deposition of these systems only involved the outer surface, and is easier in 

comparison to the tube systems. Since arrays of tubes are closed at one end and most of 

the free surface area available is inside the tubes, it is important to functionalize the inner 

surface of the tubes. Photodeposition has been employed far less in tubes. For TiO2 

nanotubes, metal should only be deposited along the tube to a depth comparable with the 

photon penetration depth. Moreover, the metal particles will nucleate at points on the 

titania surface where photoelectrons reach the surface. This corresponds to catalytically 

active locations in the titania where electron hole pair separation is suppressed and 

efficient charge transfer to the surface can occur. Tian et al.14  functionalized Pt 

nanoparticles on TiO2 nanotubes in a two-step process first to obtain a dendrimer 

structure followed by an electrochemical treatment to obtain partial conversion to small 
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particles. In more recent works15-16, Ag metal was photodeposited on TiO2 nanotubes, in 

two steps; however the resulted particle sizes was 12 nm and > 20 nm, respectively. For 

many catalytic applications, smaller metal particles below 2 nm are desirable, e.g.17-18. 

Shenvi et al17 in a study of Pd clusters of different sizes, have compared the activity of 

the size of clusters to that of the oxidation process of CO. In their study of clusters of size 

ranging from Pdn, n=1 through 25, they have found that activity to rise initially from Pd1 

to Pd20 followed by a decrease to Pd25. In a separate study, Vadja et al18 have found 

similar result. Both theoretical and experimentally, it is concluded, Pt sites of Ptn clusters 

(n= 8-10), are much more active than a Pt surface for oxidative hydrogenation of 

propane. It has been attributed to under coordinated Pt on small Ptn clusters. We have 

developed a one-step process for functionalizing nanotubes with Pt particles. Our 

synthesis method is simple and requires no post heat or chemical treatments. In one step, 

we have successfully deposited and reduced metal particles inside the tubes. Unlike other 

methods of metal functionalizations of tubes, the nano particles obtained are highly 

monodisperse, mostly < 2 nm in size and are clearly deposited along the inside walls the 

tubes. Also the particle dispersion on the inner walls of the tube is very uniform in 

comparison to other methods. This approach was successful for both supported and 

freestanding TiO2 tubes. Details of tube synthesis process are described in chapter 3.  

 
4.2       Other functionalization methods   

Before going into details of photoreduction results, the metal fuctionalization results 

obtained in other two other techniques are described.  
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4.2.1   Wet method (vacuum assisted impregnation)  

Mass transportation problem was one of the biggest challenges in impregnation 

technique. Arrays of nanotubes are closed at one end by the metal foil, trap air inside 

them. The trapped air suppressed insertion of metal precursor solution inside tubes. 

Hence in order to overcome the problem, in a modified impregnation method, liquid 

metal precursor was inserted inside tubes by application of vacuum. In the first step, 

Cu(NO3)2 solution was solidified by cooling it with dry ice. The tube sample was placed 

upside down on the solid Cu(NO3)2 surface. The air was then removed from the container 

having both Cu(NO3)2 and tube array.  After 5 minutes the cooling system was removed 

to allow the solution to melt. After completion of melting, the tubes were let to reside 

inside the Cu(NO3)2 solution for further 15 minutes. Figure 4.1 presents STEM images of 

the nanotubes obtained in this procedure. The images show the presence of clusters of 

nanoparticles inside the walls of the nanotubes. This procedure showed metal particles 

inside tubes but it was hard to control the particle size and post heat treatment resulted in 

damage of tubes. 

4.2.2       Gas method – CVD – in-situ 

Arrays of self-organized TiO2 nanotubes were synthesized by anodization of polished and 

cleaned Ti foils in fluoride mediated ethylene glycol solvent, using a Pt foil as cathode. 

In-situ ETEM studies for gas phase tungsten insertion were performed on as-prepared 

tubes in the presence of tungsten carbonyl, W(CO)6) precursor as a model for our study. 

In-situ ETEM studies were performed in an FEI Tecnai F20 field emission environmental 

transmission electron microscope (ETEM) operating at 200kV with a point resolution of 

0.24nm.  TiO2 nanotubes were heated to 300o C in vacuum and the W(CO)6 precursor 
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was admitted into the microscope column at a pressure of 0.01 Torr and the reaction was 

performed for 6 minutes. 

Figure 4.2a shows the TEM image of a set of TiO2 nanotubes before and after the 

exposure of W(CO)6 precursor gas. From the image it can be clearly seen that the bare 

TiO2 nanotubes (Figure 4.2b) were totally covered with small nanoparticles (even the 

holey-carbon support was covered with the nanoparticles). The average grain size of the 

thin film deposited on the TiO2 nanotubes was measured to be 1.2 +/- 0.2 nm (Figure 

4.3). Lattice measurement from the high resolution TEM images of these nanoparticles 

was measured to be 0.23 +/- 0.01 nm which matched with the W (110) d spacing. These 

nanoparticles were formed by the thermal decomposition of W(CO)6. To determine 

whether the nanoparticles were deposited along the internal surface or external surface of 

the nanotubes, we measured the change in internal and external diameter of the tubes 

before and after deposition. The average internal and external diameters of the nanotubes 

before the deposition were 40.1 +/- 6.1 nm and 74.0 +/- 7.9 nm respectively, whereas 

after the deposition the average values for internal and external diameter were 32.5 +/- 

5.7 nm and 84.7 +/- 9.1 nm. This shows that the internal diameter shrinks whereas the 

outer diameter increases after the exposure to W(CO)6 suggesting that the nanoparticles 

were deposited on both inside and outside the nanotubes. The average internal and 

external deposition rates were calculated to be 30 nm/sec/Torr and 74 nm/sec/Torr 

respectively. After careful measurement of changes in diameter at various points it is 

noticed there is no significant change in the deposition rate along the tube length. This 

could be due the short duration and/or low temperature of the deposition allowing the gas 

to flow uniformly along the inside of the tube. Based on our study of nanotubes of length 
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up to 500 nm, we notice no mass transportation limitation on the internal deposition rate. 

A uniform W metal deposition in TiO2 was obtained by using this CVD method.   

This method is however effective for metal functionalization, but not cost effective 

considering amount of precursor inside chamber.  

4.3       Photoreduction of Pt  

4.3.1   On anatase powder 

For a typical metal functionalization experiment, 0.015 g of PtCl4 was dissolved in a 15 

mL of 1:1 solution of methanol and water. The solution was stirred at a low speed with 

magnetic stirrers to impregnate the solution and remove trapped air within the tubes. Both 

supported and freestanding tubes were immersed in the solution. A low pressure mercury 

arc lamp (USHIO) with a narrow range of wavelength and a peak value of 306 nm was 

used to reduce the metals (the open end of supported tubes was faced towards the light 

source) while stirring the solution. This wavelength is sufficient to create electron-hole 

pairs in the TiO2. For a typical reaction, the intensity was 0.012 W/cm2 at the surface of 

the tubes and the reaction time was 3 hours. After the reaction the surface of the tubes 

were cleaned with de-ionized water.  

As a preliminary test photoreduction experiment was performed on anatase powder. 

Figure 4.4a shows the STEM images of Pt nanoparticles that are supported on anatase 

powder. Figure 4.4b shows the STEM image taken at slightly higher magnification. From 

the figure it can be seen that the Pt nanoparticles are very small and well dispersed on the 

anatase powder. Figure 4.4c shows the EDS spectrum taken from the Pt nanoparticle. 

From the spectrum it can be seen that there is no presence of Cl, which confirms the 

photoreduction of PtCl4 Pt metal. 
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4.3.2   Inside tubes – one step technique 

Inside supported TiO2 nanotubes. From the figure 4.5a it can be clearly observed that fine 

Pt nanoparticles (bright dots) are dispersed along the inside wall of the nanotube. The 

bright contrast seen at the edge of the inner tube wall is caused by the STEM projection 

effect and confirms that the particles are indeed inside the nanotube. Energy dispersive x-

ray spectroscopy (EDS) was collected from the functionalized tubes shown in Figure 

4.5b. The spectra were recorded with a highly defocussed STEM probe to avoid radiation 

damage to the Pt phase. The EDS spectra recorded under these low-dose conditions 

showed no Cl peak at 2.62 keV, confirming the photoreduction of PtCl4 to Pt metal had 

taken place under UV irradiation.  

  Figure 4.6 shows a Z-contrast image of Pt nanoparticle dispersion on a freestanding 

TiO2 tube. The bright contrast along the edge of the inner tube wall and absence of 

particles on the thicker tube wall confirms the particles are present inside the tube. The Pt 

particle size distribution was measured for each type of tube from 200 particles and is 

shown as inset to Figures 4.5a and 4.6. The mean sizes were 1.8 ± 0.3 nm and 1.8 ± 0.4 

nm for supported and unsupported tubes respectively. This is a factor of 5 times smaller 

compared to impregnation methods14. In both cases, the size distribution is rather narrow 

with a standard deviation of 0.4 nm or less showing that there is a very tight control over 

the particle size.  

   The freestanding tubes are up to 12 µm in length and mass transport limitations and 

light attenuation may cause the metal loading to drop with distance from the tube opening 

adjacent to the light source. To investigate this issue, we imaged the uniformity of the 

metal dispersion along the length of the tubes. Figure 4.7a shows a low magnification 
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STEM image of a 1.6 µ) section of a freestanding nanotube. Figure 4.7b, 4.7c and 4.7d 

are images taken at higher magnification from the top, middle and bottom of the 

nanotube, respectively. These images clearly show the uniformity of Pt nanoparticle 

distribution inside a nanotube. This suggests that particle deposition is uniform along at 

least the first 1.6 µ) length of the tube. STEM images reveal that some sections of the 

tube showed a much lighter metal loading (see Figure 4.8). However, it was not possible 

to know the original location of the section relative to the tube opening because the tubes 

are broken during STEM sample preparation. Note that this tube is free standing and 

much longer than supported tube as mentioned above. Presumable the lightly loaded 

section came from a location substantially greater than 2 µm below the tube opening. 

   Mass transport limitations could be more significant on the supported tubes because 

they are open only on one end. The STEM image (figure 4.9) shows the Pt nanoparticle 

distribution towards the closed end of a supported TiO2 nanotube. The image clearly 

shows the Pt nanoparticles at the bottom of the tube. Since these tubes are 2 µm in length, 

this demonstrates that mass transport and light penetration are not limiting factors. It also 

shows that the closed end does not prevent Pt precursor solution from reaching the 

bottom of the nanotubes. It has been observed experimentally that methanol significantly 

wets the surface of the TiO2 nanotube film compared to water. Hence the mixture of 

methanol and water facilitates the wetting of the surface of TiO2 and helps the solution 

reach the end of the tubes.      
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4.3.3   Reaction Mechanism 
 
There are two different mechanisms for reduction of PtCl4 for the experimental 

conditions employed here. In the first mechanism, TiO2 generates an electron-hole pair 

upon excitation with the light source. Methanol is a hole scavenger19 and thus suppresses 

electron-hole pair recombination allowing the photo-generated electrons from TiO2 to 

reduce the PtCl4 that is adsorbed onto the surface.  (In an electron paramagnetic 

resonance study Micic et al found a .CH2OH radical which was created by the 

photoinduced hole transfer from TiO2 to chemisorbed methanol of TiO2 surface20). In a 

second mechanism proposed by Nakamatsu et al21, it was shown that the oxidation 

potential of methanol is -0.74V whereas electron at conduction band edge of TiO2 is at -

0.18V. Hence Pt reduction can occur via direct interaction with methanol.  

   We also conducted reduction experiments both with and without the use of TiO2. 

Reduction of the solution was observed to occur in the absence of titania but the reaction 

rate was increased by between a factor of 2 - 4 when titania was present. This suggests a 

synergistic effect with both processes playing an active role in photoreduction of Pt metal 

in solution. However, particles formed directly in solution are likely to agglomerate into 

larger particles. Thus the small particles on the oxide surface are most likely formed by 

the first mechanism involving both the titania and methanol.   

 
 
4.4 Summary 
 
A one step photoreduction technique has been developed to generate a fine dispersion of 

Pt particles inside supported and free standing TiO2 nanotubes arrays.  Z-contrast STEM 

showed that the average Pt particles were less than 2 nm in size and the particles were 
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uniformly dispersed to a depth of at least 1.6 mm in the free standing tubes.  For the 

supported TiO2 tubes, particles were uniformly disperse to the closed end 2 mm below 

the tube opening showing that mass transportation limitations were not a significant 

problem.  UV light attenuation resulted in a lighter metal loading at a depth below 2 mm. 

For supported TiO2 nanotubes, the photoreduction approach is attractive because metal 

should only be deposited along the tube to a depth comparable with the photon 

penetration depth. Moreover, the metal particles will nucleate at active points on the 

titania surface where photoelectrons reach the surface. The metal functionalization 

process is simple and involves only one step and no post heat treatment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4.1. STEM image showing much lighter loading of Pt 
nanoparticles inside the tube, which could be due to the UV light 
attenuation effect in a tube after a length of 2 mm.  
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FIG.4.2a and b. In-situ environmental TEM images of TiO2 nanotubes 

at 300
o
C a) before deposition b) after W(CO)6 deposition .  

FIG. 4.3. HREM  image of W particles showing  
grain size distribution. 
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FIG.4.5. STEM image showing the Pt nanoparticle dispersion in the supported TiO2 
nanotubes that were open on one end and closed on the other end. b) EDS collected from 
particles. Inset is the particle size distribution inside tube. 
 
 
 

FIG. 4.4. STEM  image of Pt nanoparticles on anatase particles, (b) is a 
high magnification image of the same (c) EDS acquired from the nano 
particles proving it is Pt. 
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FIG. 4.6. STEM image showing the Pt nanoparticle dispersion in freestanding 
TiO2 nanotubes that is open at both ends. Inset is the particle size distribution 
inside tube. 
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FIG. 4.7. STEM images showing the Pt nanoparticle distribution on TiO2 nanotubes 
that were open on both ends. a) low magnification image showing the full length 
nanotube, b), c) and d) are the blow up images from top, middle and bottom of the 
nanotube respectively showing the presence of Pt nanoparticles. 

FIG. 4.8. Lighter loading of Pt in free standing 
tube 
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FIG. 4.9. STEM image showing the Pt nanoparticle distribution towards the 
closed end of the TiO2 nanotubes that were closed on one end. 
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CHAPTER 5 
 

SUMMARY AND FUTURE WORK 
 
5.1 Summary 

The work presented in this thesis is composed of two parts. In one part phase and 

morphology of titania tubes has been investigated in different temperature environments. 

This is discussed in detail in third chapter. In the second part, the titania tubes are 

functionalized with different metals via photoreduction technique. The photoreduction 

technique is further utilized to make bimetallic systems of Ag and Pt on anatase powder. 

The photoreduction results are discussed in chapter 4 and partly in appendix. 

5.2 Phase and morphology study of TiO2 nanotubes 

TiO2 nanotubes were prepared via anodization. The as-prepared tubes were 

annealed at several temperatures in order to obtain different combinations of phases. The 

resulting phases along with the effect of heat treatment and thus the morphology of the 

tubes were investigated. XRD was used to determine the bulk phase of the tubes whereas 

in TEM was employed to determine the nanostructure. Heating amorphous tubes 

transformed the tubes to anatase; with further heating they start transforming to rutile at 

approximately 500 oC, at higher temperature of 800 oC, the tubes are completely 

transformed to rutile. In-situ results were compared with ex-situ; it was found that 

unsupported tubes do not convert to rutile even at 800 oC. The metal-oxide interface is the 

source of this conversion. This interface facilitates oxygen vacancies and hence the 

conversion. 
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5.3 Metal functionalization of the tubes 

Pt nano particles were photo reduced inside titania nanotubes using a photo 

reduction technique. The particles were 2 nm on average in size. In a similar procedure 

Ag particles were deposited, with average particle size of 10 nm. In both cases the size 

distribution was monodisperse. Light induced electron-hole pairs available from titania as 

well as methanol as a reducing solvent both act as synergistic factors in the reduction 

process. 

 In bimetallic photo deposition of Ag and Pt , Pt was deposited followed by Ag. 

Ag was found to be enhancing the reduction process of Pt on the titania surface. EDS 

results confirmed the presence of both metals in clusters. At various reactions times, Pt 

was found to be deposited, initially onto Ag, gradually increasing in amount, and finally 

depositing onto the surface of titania independently. 

5.4 Future Work 

There are several possibilities of future expansion of the current work presented in 

the thesis. 

(i) Qualitative and semi quantitative EDS study was done on bimetallic systems. Detailed 

quantitative analysis can be done using Cliff-Lorrimor equation, after collecting EDS 

data from several clusters.  

(ii) Similarly, other reducible metals can be used to deposit with Ag to make bimetallic 

systems. 

(iii) Preliminary work on in-situ photoreduction study of Pt onto anatase has been done 

(appendix). More studies have to be performed in order to find molecular level 



! 72 

mechanism of photo reduction process while performing the reaction in environmental 

microscope in presence of light source.  

 

(iv) After initial study of catalytic performance, most optimized tubes can be prepared to 

enhance the photocatalytic efficiency of tubes. 
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APPENDIX 

 
I.  CO2 reduction with H2 gas  
 
 The catalytic properties of TiO2 tubes were estimated in CO2 reduction with H2 gas. The 

resulted gas, methane, was detected and estimated in a Varian GC, FID detector. The 

tubes, as prepared, and annealed at various temperatures were compared with that of with 

commercial P-25 and copper deposited P-25. The result is summarized in table I as 

below. 

Table I CO2 reduction efficiency with TiO2 in volume of methane production. 

Catalyst Phase Source UV (µ, 

nm) 

Methane (ppm) 

Tube, as prepared  254 20.21 

Tube, annealed at 

450 oC 

Mostly anatse 254 41 

Tube, annealed at 

600 oC 

Anatase + rutile 254 20 

P-25 Anatase + rutile 306 1.65 

P-25, 5% Cu Anatase + rutile 306 13.6 

 

 
 
II.   Other synthesis results to functionalize TiO2 tubes 
   
A three-electrode system was employed for the electrochemical deposition: the working 

and counter electrode served as TiO2 nanotube and Pt foil respectively. PtCl4 was used as 
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the electrolyte. The voltage and time of deposition are carefully adjusted and optimized 

for the growth and insertion of the particle. With an increase in voltage large particles 

were observed as shown in the SEM image in figure II below.  

 

 
           FIG. II. Pt nano particles deposited on surface of TiO2 arrays of tubes. 
 
 
 
III.    Metal particle stuffed nanotube 
 
 The photo reduction of Pt into the tube, described in chapter 4 was done on a freshly 

prepared tube pre-immersed in alcohol solution in order to avoid any air trapped at any 

moment. This resulted in TiO2 tubes heavily stuffed with fine Pt nanoparticles as shown 

in image below. 
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FIG. III. Metal nano particles filling up tubes.  
 
 
 
IV.    Secondary ion mass spectroscopy (SIMS) data  
 
SIMS was used to quantify the metals present in both Pt and Ag functionalized tubes. A 

probe of 1 micron was used to collect signal from 50-100 nm deep areas of both samples. 

Pt and Ag in tubes were found to be 12 and 5.85 atomic percent respectively. 

 
V. Catalytic data – Methylene blue dye degradation 

 
 

Methylene blue dye degradation was used as a model test to measure and compare the 

photocatalytic efficiency of TiO2 tubes, bare, annealed at various temperatures and 

functionalized with different metals. Methylene blue (MB) is an organic dye that has an 

intense blue color. It gives a characteristic absorption spectrum. MB degrades upon 

exposure to light over time up to a certain extent. However, in presence of a catalyst, the 

degradation is modified. Hence, the phenomena can act as a measure for catalytic 

efficiency of a catalyst.  
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In a typical set up, MB solution of 1x10-5 M concentration was obtained in a covered 

petri dish with catalyst placed on a magnetic stirrer. The UV light source was provided on 

the top of the solution. For a long time period, the measurement was not done and UV 

light was not exposed to the solution. At this phase the catalyst was allowed to decrease 

the dye intensity without any an absolute dark condition. The drop in dye intensity was 

measured time to time in UV-VIS spectrophotometer.  After the dye intensity 

(absorbance value obtained) attain a constant value, the light source for the photocatalytic 

experiment was illuminated over the solution. The drop in dye intensity was further 

observed due to presence of catalyst and thus measured up to 2.5 hrs. The plots (figure 

V1 and V2) below are the results of tubes, annealed at various temperatures and that of 

metal functionalized.  

 

 

 

 

 

 

 

 

 Time (minutes) 

FIG V1. Dye concentration drop with time on tubes annealed at different temperature, 

tubes annealed at 280 oC, 550 oC and 800 oC are denoted as tube-280, tube-550 and tube-

800 respectively. 
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Tubes annealed at, 800 oC, perform as well as others, however after around 80 minutes 

the performance decreases. Overall, tubes annealed at 550 oC shows best catalytic 

performance. 

 

 

 

 

 

 

 

 

 

                                             Time (minutes) 

 

FIG V2. Dye concentration drop with time on different metal functionalized tubes 

The concentration of dye is decreased by more than 60% after 150 min by Pt 

functionalized tubes and by 40% by Ag functionalized tubes. However it is not safe to 

compare the two cases, since the particle sizes are different and the amount of metals in 

each also vary. 

VI. Preliminary data of in-situ photoreduction of Pt on anatase 
 
For a photoreduction of Pt on anatase study in in-situ technique, as the chemical reaction 

described in chapter 4, a mixture of alcohol and water has to be used as solvent just as in 

ex-situ condition for the experiment. The solvent has to be inserted into reaction chamber 
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via a pumping system by evaporating the mixture of gases followed by condensing onto 

the cold stage bearing the sample on it. In order for a mixture of two liquids to evaporate 

and again condense with same composition, they have to form an azeotropic mixture. 

Methanol does not form azeotropic mixture with water at any composition but ethanol 

forms such mixture with water at 95.5 wt% of ethanol solution in water. An ex-situ 

reaction was performed with this mixture on anatase powder with PtCl4 as precursor 

under similar experimental condition as described in chapter 4. The photoreduced anatase 

powder was observed in TEM. Figure below shows the photoreduced Pt metal particles 

on anatase powder. A similar reaction mixture can be used for in-situ reactions. 
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                     FIG VI. Pt deposited on anatase powder using ethyl alcohol solution 
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 Ag on anatase powder – achieving well dispersed Ag on anatase and in tubes: 

 Ag was deposited onto anatase powder using similar technique as Pt as described 

in the previous chapter. AgNO3 being an extremely photosensitive material, the reduction 

process was very fast typically occurring on the second timescale. Hence very small Ag 

nano particles with a homogeneous distribution was obtained in 16 seconds with fixed 

9.7m mW/cm2 UV light intensity. Figure VII-1 shows a typical size distribution (~ 1-2 

nm) of Ag particles on anatase powder.  However, since the reaction time was very small, 

attaining small particles inside the tube and at the same time achieving uniformity in 

distribution was hard under similar reaction condition. Figure VII-2a shows Ag particles 

in tubes. In presence of UV light, where the reaction was fast, huge particles were seen 

agglomerating on the mouth of tubes, which were closer to the light source, with fewer 

Ag particles found inside the tube. In a second experiment, laboratory lights instead of 

UV lights were used for the reaction with the TiO2 tubes. Tubes were merged in a Ag 

solution for 4 hrs and left on the laboratory bench. These tubes were investigated and 

found to have uniform Ag particles. Figure 2b presents uniform Ag particles of average ~ 

10 nm. Inset is the size distribution of Ag inside tube. 

Phase analysis: 
 

The as prepared Ag on anatase powder was analyzed in XRD for phase 

identification. Figure VII-3 shows an XRD pattern obtained which has solid lines 

indicating anatase reflections and the dotted lines are marked to be (200), (220) and (311) 

planes of cubic Ag metal. However the experimental two-theta values of the above planes 

found to be 44.6, 64.8 and 77.8 against 44.27, 64.42 and 77.47 respectively in bulk Ag 
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metal. Hence, there is a systematic 0.4 two-theta increase, which confirms a decrease in d 

values of Ag nano particles. The reason could be attributed to the very small size of 

nanoparticles, in which bond lengths shrinks to accommodate dangling bonds on surface 

to minimize surface energy.  

 Stability of Ag nano particles in other metal solutions: 

 In the bimetallic systems in this study, Ag was used as host metal while another 

metal was targeted to be the guest metal in the systems. In order to make bimetallic 

systems, the stability of the second metal in the presence of Ag deposited anatase powder 

was studied. The sample of anatase powder as shown in figure 1 was used. A second 

metal precursor solution of M (M= Cu, Ni, Pt) was mixed with Ag deposited anatase 

powder without any UV light exposure in dark condition with mild stirring. The result 

was monitored after 10 and 20 minutes of stirring. While the results show that after 10 

minutes there is no Ag particles left on anatase powder in Pt solution (Figure VII-4a), 

after 20 minutes there is still some Ag present in Cu and Ni solution (Figure VII-4b and 

c). The result can be attributed to the reduction potential argument of Ag with respect to 

other metals. The reduction potential of Pt (+ 1.14 V) is higher than that of Ag (+ 0.79 

V), thereby dissolve Ag ions. However, Cu (+ 0.34 V) and Ni (- 0.26 V) have reduction 

potentials lower than that of Ag. Based on the above observations, it was understood that 

Ag particles as small as 1-2 nm are very unstable in other metal solutions, especially with 

Pt metal solution. Hence bigger Ag particles were sought in synthesis.  
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 Bigger Ag nano particles synthesis using photoreduction technique (plasmonic effect of 

Ag) 

In order to increase the particle size of Ag obtained so far, combinations of higher 

light intensity and longer reaction times (more than 16 sec) were employed. In various 

attempts to increase the size, it was noticed (figure VII-5a through c) that bigger Ag 

particles were occasionally found while most of the particles are still very small as in 

figure 1, i.e. 1-2 nm in size. As the reaction proceeded beyond 16 sec, the color of the 

solution became more dark, which suggested an increase in Ag particle size and/or more 

Ag metal particle production in solution and/or anatase surface. However, the result did 

not show a visible increase in existing Ag particles size nor particles density on the 

anatase surface, hence leaving the only possibility of more Ag particle formation in the 

solution. Hence the strategy of 2-step photoreduction was employed. In a two step 

process, the original excess Ag precursor solution was discarded after 16 seconds of 

reaction to collect the Ag deposited anatase powder. In the second step, fresh Ag solution 

was used to continue identical 1st step. Hence the existing Ag metals can act as host sites 

of the new Ag metals to be deposited. Figure VII-6a and b show the improved result 

obtained via such two-step technique. It has more Ag particles of 2-5 nm size, with few > 

5 nm present.  

 

Bimetallic results – AgPt  

AgPt bimetallic system was synthesized via photoreducing Ag metal followed by 

Pt onto anatase powder. In a first step Ag was deposited on anatase powder. Pt was 

deposited using photoreduction procedure onto Ag deposited anatase.  Results of three 
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different duration of reaction times of Pt deposition were compared. After 10, 35 and 45 

minutes of Pt photo deposition onto Ag deposited anatase, the sample was collected and 

investigated to see the nature of metals deposition. Figure VII-7a has 10 minute of Pt 

reduction reaction with a EDS (figure VII-7b) collected from a clustered area. The EDS 

result confirms presence of both metals. After 35 minutes of reactions (in figure VII-8) 

EDS were collected from various areas. Similar collection was done from sample from 

reaction time of 45 minutes (shown in figure VII-9). Comparing the results at both few 

interesting results are observed.  

(i) Almost all clusters have both metals present – This shows the method was successful 

in giving a bimetallic system. 

(ii) Pt is not found independent at any cluster (without Ag) at 35 minutes – This suggests 

up to 35 minutes of reduction times,  Pt was deposited preferentially at Ag sites. 

(iii) At 45 minutes, relative more amount of Pt is found in clusters – suggesting more 

deposition of Pt on to the Ag in comparison to 35 minutes. 

(iv) No cluster is found to be only of Ag after 45 minutes – all Ag sites are codeposited 

with Pt. 

(v) Independent Pt cluster is found – suggests between 35-45 minutes of reaction time, all 

Ag sites are saturated with Pt, hence prompting to formation of newer Pt independent 

sites.  

The above observations revealed that Ag is acting as a site facilitating the reduction of Pt. 

The fact that there is no independent Pt site found initially, reveals that up to this 35-45 

min time period, Pt got deposited only onto Ag sites. After this time, the saturation Pt at 

Ag sites occurred and independent Pt clusters are nucleated. 
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This further suggests that TiO2 anatase surface acts as reduction site (by providing 

electron available generated from electron-hole pair)  

A qualitative and semi quantitative analysis of EDS collected and presented in figures 7 

through 9 shows how metals depositions have varied from 10 through 45 minutes. During 

10 minutes of reaction, it is noticed relatively more amount of Ag is present in the 

clusters. In figure 8, EDS was collected from four different areas. In bigger spots, 

relatively more Pt is found, where as in smaller ones are seen with lesser Pt. The variation 

of contrast presents distribution of two metals in a cluster. After 45 minutes of reaction, 

EDS results shows even more amount of Pt in the clusters than the previous times. In 

Figure VII-10, marked, as spot 4 is an example of individual Pt formation after 45 

minutes of reaction. 
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FIG. VII-1. STEM image showing Ag nanoparticles on anatase  
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FIG. VII-2. STEM image (a) showing bigger Ag nano particle at the mouth of the 
tube, while very less particles inside (b) controlled synthesis where uniform small Ag 
particles are inside tubes 
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FIG. VII-3. XRD of Ag on anatase sample, solid line stands for anatase 
and broken lines correspond to cubic Ag.  
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FIG. VII-4. STEM image (a) 
anatase having none of Ag left 
on them after 10 min in Pt 
solution whereas there are still 
some left after 20min in (b) Cu 
and (c) Ni solution. 
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FIG. VII-5. STEM image attempts to 
make bigger Ag on anatase at various 
conditions (a) at 32 sec of reaction (b) 
higher light intensity (c) higher light 
intensity for 90 sec reaction time. 
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FIG. VII-6. STEM images of bigger 
Ag on anatase  
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FIG. VII-7. STEM image of Pt photoreduction of 10 minutes onto Ag deposited anatase 

support. (b) EDS obtained from spot indicated presence of both Pt (2.0 eV) and Ag (2.9 

eV) 
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FIG. VII-8. Pt photoreduction after 35 minutes onto Ag deposited anatase support. (b) 

through (e) are the EDS obtained from spots 1 through 4 respectively.  
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FIG. VII-9. Same reaction continued upto 45 minutes. (b) to (d) are the EDS obtained 

from spots 1 through 3 as in the image. 
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FIG. VII-10. Another set of clusters after reaction time 45 minutes, EDS (fig 10 b) 

collected from spot 4 in the sample shows an independent Pt particle formation. 
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