ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Alternative methods via random forest to identify interactions in a general framework and variable importance in the context of value-added models
  5. Full metadata

Alternative methods via random forest to identify interactions in a general framework and variable importance in the context of value-added models

Full metadata

Title
Alternative methods via random forest to identify interactions in a general framework and variable importance in the context of value-added models
Description
This work presents two complementary studies that propose heuristic methods to capture characteristics of data using the ensemble learning method of random forest. The first study is motivated by the problem in education of determining teacher effectiveness in student achievement. Value-added models (VAMs), constructed as linear mixed models, use students’ test scores as outcome variables and teachers’ contributions as random effects to ascribe changes in student performance to the teachers who have taught them. The VAMs teacher score is the empirical best linear unbiased predictor (EBLUP). This approach is limited by the adequacy of the assumed model specification with respect to the unknown underlying model. In that regard, this study proposes alternative ways to rank teacher effects that are not dependent on a given model by introducing two variable importance measures (VIMs), the node-proportion and the covariate-proportion. These VIMs are novel because they take into account the final configuration of the terminal nodes in the constitutive trees in a random forest. In a simulation study, under a variety of conditions, true rankings of teacher effects are compared with estimated rankings obtained using three sources: the newly proposed VIMs, existing VIMs, and EBLUPs from the assumed linear model specification. The newly proposed VIMs outperform all others in various scenarios where the model was misspecified. The second study develops two novel interaction measures. These measures could be used within but are not restricted to the VAM framework. The distribution-based measure is constructed to identify interactions in a general setting where a model specification is not assumed in advance. In turn, the mean-based measure is built to estimate interactions when the model specification is assumed to be linear. Both measures are unique in their construction; they take into account not only the outcome values, but also the internal structure of the trees in a random forest. In a separate simulation study, under a variety of conditions, the proposed measures are found to identify and estimate second-order interactions.
Date Created
2013
Contributors
  • Valdivia, Arturo (Author)
  • Eubank, Randall (Thesis advisor)
  • Young, Dennis (Committee member)
  • Reiser, Mark R. (Committee member)
  • Kao, Ming-Hung (Committee member)
  • Broatch, Jennifer (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Statistics
  • Data Mining
  • Interactions
  • Random Forest
  • Statistical Learning
  • Value Added Models
  • Variable Importance
  • Machine Learning
  • Data Mining
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
xx, 188 p. : ill. (some col.)
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.20819
Statement of Responsibility
by Arturo Valdivia
Description Source
Retrieved on Feb. 13, 2014
Level of coding
full
System Created
  • 2014-01-31 11:30:47
System Modified
  • 2021-08-30 01:37:45
  •     
  • 2 years 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP
Contact Us
Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Maps and Locations Jobs Directory Contact ASU My ASU
Repeatedly ranked #1 in innovation (ASU ahead of MIT and Stanford), sustainability (ASU ahead of Stanford and UC Berkeley), and global impact (ASU ahead of MIT and Penn State)
Copyright and Trademark Accessibility Privacy Terms of Use Emergency