Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. ASU Electronic Theses and Dissertations
  4. Saddle squares in random two person zero sum games with finitely many strategies
  5. Full metadata

Saddle squares in random two person zero sum games with finitely many strategies

Full metadata

Description

By the von Neumann min-max theorem, a two person zero sum game with finitely many pure strategies has a unique value for each player (summing to zero) and each player has a non-empty set of optimal mixed strategies. If the payoffs are independent, identically distributed (iid) uniform (0,1) random variables, then with probability one, both players have unique optimal mixed strategies utilizing the same number of pure strategies with positive probability (Jonasson 2004). The pure strategies with positive probability in the unique optimal mixed strategies are called saddle squares. In 1957, Goldman evaluated the probability of a saddle point (a 1 by 1 saddle square), which was rediscovered by many authors including Thorp (1979). Thorp gave two proofs of the probability of a saddle point, one using combinatorics and one using a beta integral. In 1965, Falk and Thrall investigated the integrals required for the probabilities of a 2 by 2 saddle square for 2 × n and m × 2 games with iid uniform (0,1) payoffs, but they were not able to evaluate the integrals. This dissertation generalizes Thorp's beta integral proof of Goldman's probability of a saddle point, establishing an integral formula for the probability that a m × n game with iid uniform (0,1) payoffs has a k by k saddle square (k ≤ m,n). Additionally, the probabilities of a 2 by 2 and a 3 by 3 saddle square for a 3 × 3 game with iid uniform(0,1) payoffs are found. For these, the 14 integrals observed by Falk and Thrall are dissected into 38 disjoint domains, and the integrals are evaluated using the basic properties of the dilogarithm function. The final results for the probabilities of a 2 by 2 and a 3 by 3 saddle square in a 3 × 3 game are linear combinations of 1, π2, and ln(2) with rational coefficients.

Date Created
2011
Contributors
  • Manley, Michael (Author)
  • Kadell, Kevin W. J. (Thesis advisor)
  • Kao, Ming-Hung (Committee member)
  • Lanchier, Nicolas (Committee member)
  • Lohr, Sharon (Committee member)
  • Reiser, Mark R. (Committee member)
  • Arizona State University (Publisher)
Topical Subject
  • Mathematics
  • Statistics
  • Method of steepest descent (Numerical analysis)
Resource Type
Text
Genre
Doctoral Dissertation
Academic theses
Extent
v, 103 p
Language
eng
Copyright Statement
In Copyright
Reuse Permissions
All Rights Reserved
Primary Member of
ASU Electronic Theses and Dissertations
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.9256
Statement of Responsibility
by Michael Manley
Description Source
Retrieved on Sept. 28, 2012
Level of coding
full
Note
Partial requirement for: Ph.D., Arizona State University, 2011
Note type
thesis
Includes bibliographical references (p. 96-97)
Note type
bibliography
Field of study: Mathematics
System Created
  • 2011-08-12 04:46:39
System Modified
  • 2021-08-30 01:52:33
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Explore this item

Explore Document

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information