Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations.
Download count: 0
Details
Contributors
- Guevara, Cristi Darley (Author)
- Roudenko, Svetlana (Thesis advisor)
- Castillo_Chavez, Carlos (Committee member)
- Jones, Donald (Committee member)
- Mahalov, Alex (Committee member)
- Suslov, Sergei (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2011
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2011Note typethesis
- Includes bibliographical references (p. 101-108)Note typebibliography
- Field of study: Mathematics
Citation and reuse
Statement of Responsibility
by Cristi Darley Guevara