Description

In the quark model, meson states consisting of a quark/anti-quark pair must obey Poincaré symmetry. As a result of that symmetry, for meson total angular momentum J, parity P, and

In the quark model, meson states consisting of a quark/anti-quark pair must obey Poincaré symmetry. As a result of that symmetry, for meson total angular momentum J, parity P, and charge conjugation symmetry C, states with JPC= 0--, 0+-, 1-+, 2+-, 3-+, 4+-, … should not be observed. A meson observed experimentally with such quantum numbers would indicate a so-called “exotic” meson state. Exotic mesons can be multi-quark states like tetraquarks, a combination of two or more gluons known as glueballs, or a hybrid meson (qqg). Theories have suggested that three possible exotic meson states with the 1-+ quantum number: π1, η1, and η‘1,. However, no conclusive evidence for the existence of these three exotic states has been observed. This research will look for new states that decay to K* K final states with an emphasis on exotic mesons. An analysis of K+ K- π0 final states will be presented, where a restriction on the K - π0 invariant mass yields an unexpected enhancement in the K+ K- π0 spectrum.

Included in this item (2)



Details

Contributors
Agent
Date Created
  • 2021-05

Machine-readable links