Description

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential ofurban heat island mitigation strategies to affect the urban climate, air quality, and energy consumption within their cities. The user

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential ofurban heat island mitigation strategies to affect the urban climate, air quality, and energy consumption within their cities. The user of thetool can select from over 170 US cities for which to conduct the analysis, and can specify city-wide changes in surface reflectivity and/or veg-etative cover. The Mitigation Impact Screening Tool (MIST) then extrapolates results from a suite of simulations for 20 cities to estimate airtemperature changes associated with the specified changes in surface characteristics for the selected city. Alternatively the user can simply definea nominal air temperature reduction that they hope to achieve with an unspecified mitigation scenario. These air temperature changes are theninput to energy and ozone models to estimate the impact that the mitigation action may have on the selected city. The results presented by MISTinclude a high degree of uncertainty and are intended only as a first-order estimate that urban planners can use to assess the viability of heatisland mitigation strategies for their cities. As appropriate, MIST analyses should be supplemented by more detailed modeling.

Downloads
pdf (1.6 MB)

Details

Title
  • The Urban Heat Island Mitigation Impact Screening Tool (MIST)
Contributors
Date Created
2007-02-05
Resource Type
  • Text
  • Identifier
    Note

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Sailor, D. J., & Dietsch, N. (2007). The urban heat island Mitigation Impact Screening Tool (MIST). Environmental Modelling and Software, 22(10), 1529–1541. https://doi.org/10.1016/j.envsoft.2006.11.005

    Machine-readable links