Matching Items (6)

Coupling Biogeochemical Cycles in Urban Environments: Ecosystem Services, Green Solutions, and Misconceptions

Description

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have been well documented, but they are often unclear, unquantified, and/or outweighed by potential costs. Quantifying biogeochemical processes in urban green infrastructure can improve our understanding of urban ecosystem services and disservices (negative or unintended consequences) resulting from designed urban green spaces. Here we propose a framework to integrate biogeochemical processes into designing, implementing, and evaluating the net effectiveness of green infrastructure, and provide examples for GHG mitigation, stormwater runoff mitigation, and improvements in air quality and health.

Contributors

Created

Date Created
  • 2011-02-01

132640-Thumbnail Image.png

An IoT Solution to Air Quality Monitoring

Description

Pollution is an increasing problem around the world, and one of the main forms it takes is air pollution. Air pollution, from oxides and dioxides to particulate matter, continues to

Pollution is an increasing problem around the world, and one of the main forms it takes is air pollution. Air pollution, from oxides and dioxides to particulate matter, continues to contribute to millions of deaths each year, which is more than the next three leading causes of environment-related death combined. Plus, the problem is only growing as industrial plants, factories, and transportation continues to rapidly increase across the globe. Those most affected include less developed countries and individuals with pre-existing respiratory conditions. Although many citizens know about this issue, it is often unclear what times and locations are worst in terms of pollutant concentration as it can vary on the time of day, local activity, and other variable factors. As a result, citizens lack the knowledge and resources to properly combat or avoid air pollution, as well as the data and evidence to support any sort of regulatory change. Many companies and organizations have tried to address this through Air Quality Indexes (AQIs) but are not focused enough to help the everyday citizen, and often fail to include many significant pollutants. Thus, we sought to address this issue in a cost-effective way through creating a network of IoT (Internet of Things) devices and deploying them in a select area of Tempe, Arizona. We utilized Arduino Microprocessors and Wireless Radio Frequency Transceivers to send and receive air pollution data in real time. Then, displayed this data in such a way that it could be released to the public via web or mobile app. Furthermore, the product is cheap enough to be reproduced and sold in bulk as well as scaled and customized to be compatible with dozens of different air quality sensors.

Contributors

Agent

Created

Date Created
  • 2019-05

136221-Thumbnail Image.png

Air Quality, Community Engagement, and Emerging Technologies

Description

Maricopa County is the home of the Phoenix metropolitan area, an expansive city with serious air quality concerns. To ameliorate air quality in the county, the Maricopa County Air Quality

Maricopa County is the home of the Phoenix metropolitan area, an expansive city with serious air quality concerns. To ameliorate air quality in the county, the Maricopa County Air Quality Department developed a website and mobile application called "Clean Air Make More" as a means of outreach and engagement. In doing this, the county has found a way to engender a bilateral relationship between individuals and their government agency. This study analyzes the effectiveness of Clean Air Make More in establishing this relationship and engaging the community in efforts to improve air quality. It concludes that the design of the application effectively meets user needs, but marketing efforts should target populations disposed to taking action regarding air quality.

Contributors

Created

Date Created
  • 2015-05

The Urban Heat Island Mitigation Impact Screening Tool (MIST)

Description

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential ofurban heat island mitigation strategies to affect the urban climate,

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential ofurban heat island mitigation strategies to affect the urban climate, air quality, and energy consumption within their cities. The user of thetool can select from over 170 US cities for which to conduct the analysis, and can specify city-wide changes in surface reflectivity and/or veg-etative cover. The Mitigation Impact Screening Tool (MIST) then extrapolates results from a suite of simulations for 20 cities to estimate airtemperature changes associated with the specified changes in surface characteristics for the selected city. Alternatively the user can simply definea nominal air temperature reduction that they hope to achieve with an unspecified mitigation scenario. These air temperature changes are theninput to energy and ozone models to estimate the impact that the mitigation action may have on the selected city. The results presented by MISTinclude a high degree of uncertainty and are intended only as a first-order estimate that urban planners can use to assess the viability of heatisland mitigation strategies for their cities. As appropriate, MIST analyses should be supplemented by more detailed modeling.

Contributors

Agent

Created

Date Created
  • 2007-02-05

149657-Thumbnail Image.png

An analysis of the impacts and non-attainment risks of the revised sulfur dioxide national ambient air quality standard on the Toledo core based statistical area using the American Meteorological Society-Environmental Protection Agency regulatory model

Description

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.

Contributors

Agent

Created

Date Created
  • 2011

126620-Thumbnail Image.png

Automobile Idling Reduction Program

Description

Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road

Description
By avoiding vehicle idling for three minutes every day of the year can reduce 1.4 million metric tons annually, which is equivalent to taking 320,000 cars off the road for the entire year (Canada.ca, 2016). The Automobile Idle Reduction Program (AIRP) is an outreach initiative to prevent carbon emissions from being released into the air by automobiles idling in Maricopa County. The initiative establishes a campaign to promote behavioral changes that target high idling industries: freight and delivery, schools and drive- thru facilities.

Background
Globally, carbon emissions negatively alter the air we breathe and is a leading cause in climate change. These problems adversely affect the global environment and human health. Additionally, they have cancer causing agents in the particulate matter. Unfortunately, over the years, Maricopa County has failed to meet air quality standards for particulate matter pollution which effects the health of residents. By not meeting the air quality standards, Maricopa County can receive sanctions and the Environmental Protection Agency can reject Arizona’s State Implementation Plan. This looming threat can financially impinge the economy of Maricopa County, potentially costing taxpayers a substantial increase in taxes.

Strategy and Solution
To battle the creation of carbon emissions and particulate matter, AIRP has developed a strategy for each industry. In partnership with the Maricopa County Air Quality Department, AIRP will introduce the freight and delivery companies to the Diesel Emission Reduction Act (DERA) Grant promotion to facilitate and fiscally assist with changing older diesel engines into higher efficiency engines that burn cleaner. Provide educators a fifth to eighth grade state approved education program to teach students the importance of vehicle idling reduction at no cost. And work with community organizations to offer a discount at their stores for those patrons who choose to turn their engine off and order inside, rather than idling in the drive-thru facilities. The campaign will market the interest of AIRP to the general public through purposefully placed billboards, light rail wraps, social media pushes, handouts and vinyl stickers.

Contributors

Agent

Created

Date Created
  • 2020-05-13