Skip to main content

ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Home Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Stress and the Genetic Pathway of Schizophrenia: Chromatin immunoprecipitation (ChIP) analysis of the role of early growth response 3 protein (EGR3) in the regulation of the Htr2a gene using mice
  5. Full metadata

Stress and the Genetic Pathway of Schizophrenia: Chromatin immunoprecipitation (ChIP) analysis of the role of early growth response 3 protein (EGR3) in the regulation of the Htr2a gene using mice

Full metadata

Description

Schizophrenia affects 1.1% of the population worldwide. Schizophrenia is a complex, multifactorial disorder. Stress can trigger psychotic episodes and exacerbate schizophrenic symptoms. For humans, one gene implicated in stress and schizophrenia in humans is the early growth response 3 (EGR3). Patients with genomic variations in EGR3 have reduced levels of EGR3 in the prefrontal brain region compared with healthy patients. Schizophrenic patients also have less serotonin 2A receptor (5HT2AR), which is coded by the gene Htr2a, in their prefrontal cortex. Mice that are Egr3-deficient also have decreased levels of 5HT2AR, suggesting that Egr3 may be involved in the regulation of 5HT2AR. The purpose of the experiment is to determine if EGR3 binds to the Htr2a gene promoter region by using a Chromatin immunoprecipitation (ChIP) assay. We will use ECS to increase EGR3 expression. Previously we have identified two upstream sites of interest where EGR3 potentially binds to the Htr2a gene, one which is distal and one proximal to the transcription start site. After ECS, increased binding is seen in the Htr2a distal region with EGR3 via the ChIP assay. Increased binding was not observed at either of the promoter sites; however, the t-test comparing the distal site of the ECS and the No ECS groups to have a p-value of 0.056, suggesting that increasing the number of animals (n=7) could possibly give a more accurate representation to test our hypothesis. However, the experiment still suggests increased expression and that EGR3 may bind to the distal site of Htr2a. Keywords: stress, environment, genetics, schizophrenia, EGR3, chromatin immunoprecipitation

Date Created
2015-05
Contributors
  • Mishra, Abhinav (Author)
  • Buetow, Kenneth (Thesis director)
  • Gallitano, Amelia (Committee member)
  • Zhao, Xiuli (Committee member)
  • Barrett, The Honors College (Contributor)
  • School of Politics and Global Studies (Contributor)
  • School of Life Sciences (Contributor)
Topical Subject
  • EGR3
  • Chromatin Immunoprecipitation
  • Schizophrenia
  • environment
  • Genetics
  • Stress
Resource Type
Text
Extent
19 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2014-2015
Handle
https://hdl.handle.net/2286/R.I.29278
Embargo Release Date
Sun, 04/30/2017 - 03:56
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:57
System Modified
  • 2021-08-11 04:09:57
  •     
  • 1 year 5 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP

Contact Us

Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Number one in the U.S. for innovation. ASU ahead of MIT and Stanford. - U.S. News and World Report, 8 years, 2016-2023
Maps and Locations Jobs Directory Contact ASU My ASU
Copyright and Trademark Accessibility Privacy Terms of Use Emergency COVID-19 Information