Description

The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to

The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were discussed in depth in this paper. Crazing only occurs in tensile stress, is initiated on the surface of the material, and only occurs in brittle polymers. Crazing also accounts for a 40-60% decrease in density, causing localized weakening of the material and a concentration in stress. This is due to a decrease in effective cross sectional area. The mechanism behind discontinuous growth bands was also discussed to be the cause of cyclic crazing. Shear banding only occurs in ductile polymers and can result in the failure of polymers via necking. Furthermore, the high fatigue resistance of silicone elastomers was discussed in this paper. This conclusion was made because of the lack of fatigue mechanisms (crazing, discontinuous growth bands, and shears banding) in the observed elastomer's microstructure after the samples had undergone fatigue tests. This was done through an analysis of room temperature vulcanized silicone adhesives, a heat-curing silicone elastomer, and a self-curing transparent silicone rubber. Fatigue of room temperature vulcanized silicon was observed, however this was reasoned to be the failure of the adhesion of the elastomer to the steel substrate instead of the microstructure itself. Additionally, the significance of fatigue in real world applications was discussed using SouthWest Airlines Flight 812 as an example.

Included in this item (2)



Machine-readable links