ASU Global menu

Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
Arizona State University Arizona State University
ASU Library KEEP

Main navigation

Browse Collections Share Your Work
Copyright Describe Your Materials File Formats Open Access Repository Practices Share Your Materials Terms of Deposit API Documentation
Skip to Content Report an accessibility problem ASU Home My ASU Colleges and Schools Sign In
  1. KEEP
  2. Theses and Dissertations
  3. Barrett, The Honors College Thesis/Creative Project Collection
  4. Bi-phase Synthesis of the Zirconium Metal-Organic Framework, UiO-66
  5. Full metadata

Bi-phase Synthesis of the Zirconium Metal-Organic Framework, UiO-66

Full metadata

Title
Bi-phase Synthesis of the Zirconium Metal-Organic Framework, UiO-66
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
Date Created
2016-12
Contributors
  • Close, Emily Charlotte (Author)
  • Mu, Bin (Thesis director)
  • Shan, Bohan (Committee member)
  • Chemical Engineering Program (Contributor)
  • Barrett, The Honors College (Contributor)
Topical Subject
  • MOF
  • Membranes
  • Separations
Resource Type
Text
Extent
15 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Barrett, The Honors College Thesis/Creative Project Collection
Series
Academic Year 2016-2017
Handle
https://hdl.handle.net/2286/R.I.42598
Level of coding
minimal
Cataloging Standards
asu1
System Created
  • 2017-10-30 02:50:58
System Modified
  • 2021-08-11 04:09:57
  •     
  • 2 years 3 months ago
Additional Formats
  • OAI Dublin Core
  • MODS XML

Quick actions

About this item

Overview
 Copy permalink

Share this content

Feedback

ASU University Technology Office Arizona State University.
KEEP
Contact Us
Repository Services
Home KEEP PRISM ASU Research Data Repository
Resources
Terms of Deposit Sharing Materials: ASU Digital Repository Guide Open Access at ASU

The ASU Library acknowledges the twenty-three Native Nations that have inhabited this land for centuries. Arizona State University's four campuses are located in the Salt River Valley on ancestral territories of Indigenous peoples, including the Akimel O’odham (Pima) and Pee Posh (Maricopa) Indian Communities, whose care and keeping of these lands allows us to be here today. ASU Library acknowledges the sovereignty of these nations and seeks to foster an environment of success and possibility for Native American students and patrons. We are advocates for the incorporation of Indigenous knowledge systems and research methodologies within contemporary library practice. ASU Library welcomes members of the Akimel O’odham and Pee Posh, and all Native nations to the Library.

Maps and Locations Jobs Directory Contact ASU My ASU
Repeatedly ranked #1 in innovation (ASU ahead of MIT and Stanford), sustainability (ASU ahead of Stanford and UC Berkeley), and global impact (ASU ahead of MIT and Penn State)
Copyright and Trademark Accessibility Privacy Terms of Use Emergency