Description

Video summarization is gaining popularity in the technological culture, where positioning the mouse pointer on top of a video results in a quick overview of what the video is about.

Video summarization is gaining popularity in the technological culture, where positioning the mouse pointer on top of a video results in a quick overview of what the video is about. The algorithm usually selects frames in a time sequence through systematic sampling. Invariably, there are other applications like video surveillance, web-based video surfing and video archival applications which can benefit from efficient and concise video summaries. In this project, we explored several clustering algorithms and how these can be combined and deconstructed to make summarization algorithm more efficient and relevant. We focused on two metrics to summarize: reducing error and redundancy in the summary. To reduce the error online k-means clustering algorithm was used; to reduce redundancy we applied two different methods: volume of convex hulls and the true diversity measure that is usually used in biological disciplines. The algorithm was efficient and computationally cost effective due to its online nature. The diversity maximization (or redundancy reduction) using technique of volume of convex hulls showed better results compared to other conventional methods on 50 different videos. For the true diversity measure, there has not been much work done on the nature of the measure in the context of video summarization. When we applied it, the algorithm stalled due to the true diversity saturating because of the inherent initialization present in the algorithm. We explored the nature of this measure to gain better understanding on how it can help to make summarization more intuitive and give the user a handle to customize the summary.

Included in this item (2)



Machine-readable links