131391-Thumbnail Image.png
Description
Surface Mechanical Attrition Treatment (SMAT) is a process used to coat metallic alloy surfaces with a nanocrystallized layer via mechanical abrasion. SMAT has garnered a significant amount of interest from the scientific community as a surface treatment technique due to

Surface Mechanical Attrition Treatment (SMAT) is a process used to coat metallic alloy surfaces with a nanocrystallized layer via mechanical abrasion. SMAT has garnered a significant amount of interest from the scientific community as a surface treatment technique due to the ability of this fine grain top layer to provide several benefits to its constituent alloy, namely significantly higher hardness, fatigue strength, and most pertinently, greatly improved corrosion resistance. Emerging research suggests that SMAT can also be used to apply powder coatings onto target substrates. A given substrate can be installed in a ball mill, where stainless steel balls coated with pure elemental powder deliver sustained impact onto the substrate, embedding the powders onto its surface. This paper will explore the process of coating aluminum 7075 coating with chromium powder via SMAT, and the effects doing so will have on the corrosion resistance properties of the aluminum 7075. Traditionally, high-strength alloys have been treated with chromium via the process of electroplating, where the alloys are subjected to a hexavalent chromium plating procedure that is known to risk releasing toxic carcinogens into the environment. Coating these alloys with SMAT could minimize such negative externalities, while yielding benefits unique to the SMAT coating process itself. Baseline corrosion testing reveals that the corrosion resistance properties of the aluminum 7075 improved marginally when exposed to SMAT without the addition of any chromium powder. A literature review conducted in this paper of select studies on SMAT coating also demonstrates that material properties intrinsic to aluminum 7075 and pure chromium powder, as well as interaction effects occurring between aluminum and chromium when subjected to mechanical alloying, could enable the SMAT coating of aluminum 7075 with chromium to result in greatly enhanced corrosion resistance properties. While this was not accomplished within the duration of the Honors Project due to logistical difficulties brought forth by the COVID-19 epidemic, the baseline corrosion testing performed, as well as the literature review of studies directly relevant to the matter, should hopefully provide some information of value in any future exploration of the topic.
1 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Microstructural Evolution and Corrosion Behavior of Chromium Coated Aluminum 7075
Contributors
Date Created
2020-05
Resource Type
  • Text
  • Machine-readable links