Description

Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a

Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical (EC) gate voltage to the molecule, we switch the redox group between the oxidized and reduced states, leading to reversible switching of the DNA conductance between two discrete levels. We further show that monitoring the individual conductance switching allows the study of redox reaction kinetics and thermodynamics at single molecular level using DNA as a probe. Our theoretical calculations suggest that the switch is due to the change in the energy level alignment of the redox states relative to the Fermi level of the electrodes.

Reuse Permissions
  • Downloads
    pdf (2.4 MB)

    Details

    Title
    • Gate-Controlled Conductance Switching in DNA
    Contributors
    Date Created
    2017-02-20
    Resource Type
  • Text
  • Collections this item is in
    Identifier
    • Digital object identifier: 10.1038/ncomms14471
    • Identifier Type
      International standard serial number
      Identifier Value
      2041-1723
    Note

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Xiang, L., Palma, J. L., Li, Y., Mujica, V., Ratner, M. A., & Tao, N. (2017). Gate-controlled conductance switching in DNA. Nature Communications, 8, 14471. doi:10.1038/ncomms14471

    Machine-readable links