Matching Items (21)

128518-Thumbnail Image.png

Piezoresistivity in single DNA molecules

Description

Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and

Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π–π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes.

Contributors

Agent

Created

Date Created
  • 2015-09-04

128543-Thumbnail Image.png

Gate-controlled conductance switching in DNA

Description

Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated.

Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical (EC) gate voltage to the molecule, we switch the redox group between the oxidized and reduced states, leading to reversible switching of the DNA conductance between two discrete levels. We further show that monitoring the individual conductance switching allows the study of redox reaction kinetics and thermodynamics at single molecular level using DNA as a probe. Our theoretical calculations suggest that the switch is due to the change in the energy level alignment of the redox states relative to the Fermi level of the electrodes.

Contributors

Agent

Created

Date Created
  • 2017-02-20

133783-Thumbnail Image.png

Computational Characterization of a Ni Catalyst

Description

Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often

Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often synthesized to define structure-function relationships and optimize catalysis. However, this process can also lead to drastic and unpredictable changes in the catalytic behavior. In this paper, we use density functional theory calculations to identify changes in the electronic structure of [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1ʹ-bis(diphenylphosphino)ferrocene) relative to [Ni(tdt)(dppf)] (tdt = toluene-3,4-dithiol) as a means to explain the substantially reduced electrocatalytic activity of the tdt complex. An increased likelihood of protonation at the sulfur sites of the tdt complex relative to the Ni is revealed. This decreased propensity of metal protonation may lead to less efficient metal-hydride production and subsequently catalysis.

Contributors

Agent

Created

Date Created
  • 2018-05

137195-Thumbnail Image.png

Synthesis and Characterization of Low-Valent Nickel Hydrosilylation Catalysts

Description

The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni.

The addition of aminoalkyl-substituted α-diimine (DI) ligands to bis(1,5 cyclooctadiene) nickel (or (COD)2Ni) resulted in the formation of two new nickel complexes with the general formula of (Me2NPrDI)2Ni and (PyEtDI)2Ni. Investigation of these complexes by 1H NMR spectroscopy revealed diimine coordination but also the absence of amine arm coordination. Using the 1H NMR spectra in conjunction with structures determined through single crystal X-ray diffraction, the electronic structure of both complexes was described as having a Ni(II) metal center that is antiferromagnetically coupled to 2 DI radical monoanions. A greater ligand field was sought by replacing the pendant amines with phosphine groups on the DI ligands. This yielded ligands with the general formula (Ph2PPrDI) and (Ph2PEtDI). Upon addition to (COD)2Ni, each ligand immediately displaced both COD ligands from the Ni0 center to produce new κ4 N,N,P,P complexes, (Ph2PPrDI)Ni and (Ph2PEtDI)Ni, as observed via single crystal X-ray diffraction and NMR spectroscopy. Reduction of the DI backbone was observed in both complexes, with both complexes being described as having a Ni(I) metal center that is antiferromagnetically coupled to a DI radical monoanion. In addition to alkylphosphine substituted DI ligands, the coordination of a pyridine diimine (PDI) ligand featuring pendant alkylphosphines was also investigated. The addition of (Ph2PPrPDI) to (COD)2Ni produced a new paramagnetic (μeff = 1.21 μB), κ4-N,N,N,P complex identified as (Ph2PPrPDI)Ni. Reduction of the PDI chelate was observed through single crystal X-ray diffraction with the electronic structure described as having a low-spin Ni(I) metal center that is weakly coupled to a PDI radical monoanion (SNi = 1/2). The ability of the three Ni complexes to mediate the hydrosilylation of several unsaturated organic substrates was subsequently investigated. Using a range of catalyst loadings, the hydrosilylation of various substituted ketones afforded a mixture of both the mono- and di-hydrosilylated products within 24 hours, while the hydrosilylation of various substituted aldehydes afforded the mono-hydrosilylated product almost exclusively within hours. (Ph2PEtDI)Ni and (Ph2PPrPDI)Ni were identified as the most effective catalysts for the hydrosilylation of aldehydes at ambient temperature using catalyst loadings of 1 mol%.

Contributors

Agent

Created

Date Created
  • 2014-05

130434-Thumbnail Image.png

Simple and accurate correlation of experimental redox potentials and DFT-calculated HOMO/LUMO energies of polycyclic aromatic hydrocarbons

Description

The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information,

The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited because of the computational requirements for large systems. Methodologies that yield strong linear correlations between calculations and experimental data have been reported, however the balance between accuracy and computational cost is always a major issue. In this work, linear correlations (with an R-2 value of up to 0.9990) between DFT-calculated HOMO/LUMO energies and 70 redox potentials from a series of 51 polycyclic aromatic hydrocarbons (obtained from the literature) are presented. The results are compared to previously reported linear correlations that were obtained with a more expensive computational methodology based on a Born-Haber thermodynamic cycle. It is shown in this article that similar or better correlations can be obtained with a simple and cheaper calculation.

Contributors

Created

Date Created
  • 2013-10-28

129515-Thumbnail Image.png

Dopamine Adsorption on TiO2 Anatase Surfaces

Description

The dopamine-TiO[subscript 2] system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key

The dopamine-TiO[subscript 2] system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase surfaces is computed and related to changes in the electronic structure. Two features are observed: the appearance of a state in the material band gap, and charge transfer between molecule and surface upon electronic excitation. The analysis of the energetics of the systems would point to a selective adsorption of dopamine on the (001) and (100) terminations, with much less affinity for the (101) plane.

Contributors

Agent

Created

Date Created
  • 2014-09-04

129517-Thumbnail Image.png

Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine

Description

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P[subscript 2] [bdt = benzene-1,2-dithiolate; P[subscript 2] = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P[subscript 2] [bdt = benzene-1,2-dithiolate; P[subscript 2] = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fe[subscript d]) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF[subscript 4]·OEt[subscript 2], triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO][superscript +] that can be reversibly converted back to 1 by deprotonation using NEt[subscript 3]. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)[superscript +] susceptible to external CO binding.

Contributors

Agent

Created

Date Created
  • 2014-09-01

129215-Thumbnail Image.png

Spatial modulation of light transmission through a single microcavity by coupling of photosynthetic complex excitations to surface plasmons

Description

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate spatial modulation of light transmission through a single microcavity patterned on a freestanding Au film, strongly coupled to one of the most efficient energy transfer photosynthetic proteins in nature, photosystem I. Here we observe a clear correlation between the appearance of spatial modulation of light and molecular photon absorption, accompanied by a 13-fold enhancement in light transmission and the emergence of a distinct electromagnetic standing wave pattern in the cavity. This study provides the path for engineering various types of bio-photonic devices based on the vast diversity of biological molecules in nature.

Contributors

Agent

Created

Date Created
  • 2015-06-01

Life In Motion: Visualizing Biomacromolecules By Time-Resolved Serial Femtosecond Crystallography

Description

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This

Time-resolved serial femtosecond crystallography is an emerging method that allows for structural discovery to be performed on biomacromolecules during their dynamic trajectory through a reaction pathway after activation. This is performed by triggering a reaction on an ensemble of molecules in nano- or microcrystals and then using femtosecond X-ray laser pulses produced by an X-ray free electron laser to collect near-instantaneous data on the crystal. A full data set can be collected by merging a sufficient number of these patterns together and multiple data sets can be collected at different points along the reaction pathway by manipulating the delay time between reaction initiation and the probing X-rays. In this way, these ‘snapshot’ structures can be viewed in series to make a molecular movie, allowing for atomic visualization of a molecule in action and, thereby, a structural basis for the mechanism and function of a given biomacromolecule.

This dissertation presents results towards this end, including the successful implementations of the first diffusive mixing chemoactivated reactions and ultrafast dynamics in the femtosecond regime. The primary focus is on photosynthetic membrane proteins and enzymatic drug targets, in pursuit of strategies for sustainable energy and medical advancement by gaining understanding of the structure-function relationships evolved in nature. In particular, photosystem I, photosystem II, the complex of photosystem I and ferredoxin, and 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase are reported on, from purification and isolation, to crystallogenesis, to experimental design and data collection and subsequent interpretation of results and novel insights gained.

Contributors

Agent

Created

Date Created
  • 2018

153645-Thumbnail Image.png

Synthesis and photophysical characterization of an artificial photosynthetic reaction center exhibiting acid-responsive regulation of charge separation

Description

Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized

Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus’s ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.

Contributors

Agent

Created

Date Created
  • 2015