Description

The key role of water to obtain high-mobility IO:H (hydrogenated indium oxide) layers has been well documented, but introducing the required tiny amount of water is technologically challenging. We first

The key role of water to obtain high-mobility IO:H (hydrogenated indium oxide) layers has been well documented, but introducing the required tiny amount of water is technologically challenging. We first use simulations to evidence the key role of high mobility for the transparent conductive oxide for high-efficiency crystalline silicon solar cells. Then, we investigate an approach to fabricate high-mobility IO:H that circumvent the introduction of water vapor, relying on water vapor from ambient air.

Reuse Permissions
  • application/pdf

    Download count: 0

    Details

    Contributors
    Date Created
    • 2016-09-23
    Resource Type
  • Text
  • Collections this item is in
    Identifier

    Citation and reuse

    Cite this item

    This is a suggested citation. Consult the appropriate style guide for specific citation guidelines.

    Boccard, M., Rodkey, N., & Holman, Z. C. (2016). High-mobility Hydrogenated Indium Oxide without Introducing Water During Sputtering. Energy Procedia, 92, 297-303. doi:10.1016/j.egypro.2016.07.083

    Machine-readable links