The collection collates collections by schools, centers, programs, and research groups.

Displaying 1 - 10 of 26
Filtering by

Clear all filters

160837-Thumbnail Image.png
Description

Disparities in healthy food access are well documented in cross-sectional studies in communities across the United States. However, longitudinal studies examining changes in food environments within various neighborhood contexts are scarce. In a sample of 142 census tracts in four low-income, high-minority cities in New Jersey, United States, we examined

Disparities in healthy food access are well documented in cross-sectional studies in communities across the United States. However, longitudinal studies examining changes in food environments within various neighborhood contexts are scarce. In a sample of 142 census tracts in four low-income, high-minority cities in New Jersey, United States, we examined the availability of different types of food stores by census tract characteristics over time (2009–2017). Outlets were classified as supermarkets, small grocery stores, convenience stores, and pharmacies using multiple sources of data and a rigorous protocol. Census tracts were categorized by median household income and race/ethnicity of the population each year. Significant declines were observed in convenience store prevalence in lower- and medium-income and majority black tracts (p for trend: 0.004, 0.031, and 0.006 respectively), while a slight increase was observed in the prevalence of supermarkets in medium-income tracts (p for trend: 0.059). The decline in prevalence of convenience stores in lower-income and minority neighborhoods is likely attributable to declining incomes in these already poor communities. Compared to non-Hispanic neighborhoods, Hispanic communities had a higher prevalence of small groceries and convenience stores. This higher prevalence of smaller stores, coupled with shopping practices of Hispanic consumers, suggests that efforts to upgrade smaller stores in Hispanic communities may be more sustainable.

ContributorsOhri-Vachaspati, Punam (Author) / DeWeese, Robin (Author) / Acciai, Francesco (Author) / DeLia, Derek Michael, 1969- (Author) / Tulloch, David (Author) / Tong, Daoqin (Author) / Lorts, Cori (Author) / Yedidia, Michael J., 1946- (Author)
Created2019-07-03
160874-Thumbnail Image.png
Description

In response to lack of access to healthy foods, many low-income communities are instituting local healthy corner store programs. Some stores also participate in the United States Department of Agriculture's Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) and the Supplemental Nutrition Assistance Program (SNAP). This study used

In response to lack of access to healthy foods, many low-income communities are instituting local healthy corner store programs. Some stores also participate in the United States Department of Agriculture's Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) and the Supplemental Nutrition Assistance Program (SNAP). This study used two assessment tools to compare the healthfulness of offerings at stores participating in local healthy store programs (upgraded stores), WIC, and/or SNAP to that of similar non-participating stores.

Based on store audits conducted in 315 New Jersey corner stores in 2014, we calculated healthy food availability scores using subsections of the Nutrition Environment Measures Survey for Corner Stores (NEMS-CS-Availability) and a short-form corner store audit tool (SCAT). We used multivariable regression to examine associations between program participation and scores on both instruments.

Adjusting for store and block group characteristics, stores participating in a local healthy store program had significantly higher SCAT scores than did non-participating stores (upgraded: M = 3.18, 95% CI 2.65–3.71; non-upgraded: M = 2.52, 95% CI 2.32–2.73); scores on the NEMS-CS-Availability did not differ (upgraded: M = 12.8, 95% CI 11.6–14.1; non-upgraded: M = 12.5, 95% CI 12.0–13.0). WIC-participating stores had significantly higher scores compared to non-participating stores on both tools. Stores participating in SNAP only (and not in WIC) scored significantly lower on both instruments compared to non-SNAP stores.

WIC-participating and non-SNAP corner stores had higher healthfulness scores on both assessment tools. Upgraded stores had higher healthfulness scores compared to non-upgraded stores on the SCAT.

ContributorsDeWeese, Robin (Author) / Todd, Michael (Author) / Karpyn, Allison (Author) / Yedidia, Michael J., 1946- (Author) / Kennedy, Michelle (Author) / Bruening, Meg (Author) / Wharton, Christopher M. (Author) / Ohri-Vachaspati, Punam (Author)
Created2016-06-29
160912-Thumbnail Image.png
Description

Objective: The Social Ecological Model (SEM) has been used to describe the aetiology of childhood obesity and to develop a framework for prevention. The current paper applies the SEM to data collected at multiple levels, representing different layers of the SEM, and examines the unique and relative contribution of

Objective: The Social Ecological Model (SEM) has been used to describe the aetiology of childhood obesity and to develop a framework for prevention. The current paper applies the SEM to data collected at multiple levels, representing different layers of the SEM, and examines the unique and relative contribution of each layer to children's weight status.

Design: Cross-sectional survey of randomly selected households with children living in low-income diverse communities.

Setting: A telephone survey conducted in 2009-2010 collected information on parental perceptions of their neighbourhoods, and household, parent and child demographic characteristics. Parents provided measured height and weight data for their children. Geocoded data were used to calculate proximity of a child's residence to food and physical activity outlets.

Subjects: Analysis based on 560 children whose parents participated in the survey and provided measured heights and weights.

Results: Multiple logistic regression models were estimated to determine the joint contribution of elements within each layer of the SEM as well as the relative contribution of each layer. Layers of the SEM representing parental perceptions of their neighbourhoods, parent demographics and neighbourhood characteristics made the strongest contributions to predicting whether a child was overweight or obese. Layers of the SEM representing food and physical activity environments made smaller, but still significant, contributions to predicting children's weight status.

Conclusions: The approach used herein supports using the SEM for predicting child weight status and uncovers some of the most promising domains and strategies for childhood obesity prevention that can be used for designing interventions.

ContributorsOhri-Vachaspati, Punam (Author) / DeLia, Derek Michael, 1969- (Author) / DeWeese, Robin (Author) / Crespo, Noe C. (Author) / Todd, Michael (Author) / Yedidia, Michael J., 1946- (Author)
Created2014-11-06
291-Thumbnail Image.png
Description

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnershi

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnership for Healthy Kids program to plan and implement policy and environmental change strategies to prevent childhood obesity. Effective interventions for addressing childhood obesity require community-specific information on

who is most at risk and on contributing factors that can be addressed through tailored interventions that meet the needs of the community. Based on comprehensive research, a series of reports are being prepared for each community to assist in planning effective interventions.

The main components of the study were:

• A household telephone survey of 1700 families with 3–18 year old children,

• De-identified heights and weights measured at public schools,

• Assessment of the food and physical activity environments using objective data.

This report presents the results from the household survey. Reports based on school body mass index (BMI) data and food and physical activity environment data are available at www.cshp.rutgers.edu/childhoodobesity.htm.

Created2010
292-Thumbnail Image.png
Description

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnershi

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnership for Healthy Kids program to plan and implement policy and environmental change strategies to prevent childhood obesity. Effective interventions for addressing childhood obesity require community-specific information on

who is most at risk and on contributing factors that can be addressed through tailored interventions that meet the needs of the community. Based on comprehensive research, a series of reports are being prepared for each community to assist in planning effective interventions.

The main components of the study were:

• A household telephone survey of 1700 families with 3–18 year old children,

• De-identified heights and weights measured at public schools,

• Assessment of the food and physical activity environments using objective data.

This report presents the results from the household survey. Reports based on school body mass index (BMI) data and food and physical activity environment data are available at www.cshp.rutgers.edu/childhoodobesity.htm.

Created2010
289-Thumbnail Image.png
Description

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnershi

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnership for Healthy Kids program to plan and implement policy and environmental change strategies to prevent childhood obesity. Effective interventions for addressing childhood obesity require community-specific information on

who is most at risk and on contributing factors that can be addressed through tailored interventions that meet the needs of the community. Based on comprehensive research, a series of reports are being prepared for each community to assist in planning effective interventions.

The main components of the study were:

• A household telephone survey of 1700 families with 3–18 year old children,

• De-identified heights and weights measured at public schools,

• Assessment of the food and physical activity environments using objective data.

This report presents the results from the household survey. Reports based on school body mass index (BMI) data and food and physical activity environment data are available at www.cshp.rutgers.edu/childhoodobesity.htm.

Created2010
290-Thumbnail Image.png
Description

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnershi

The New Jersey Childhood Obesity Study was designed to provide vital information for planning, implementing, and evaluating interventions aimed at preventing childhood obesity in five New Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by the Robert Wood Johnson Foundation’s New Jersey Partnership for Healthy Kids program to plan and implement policy and environmental change strategies to prevent childhood obesity. Effective interventions for addressing childhood obesity require community-specific information on

who is most at risk and on contributing factors that can be addressed through tailored interventions that meet the needs of the community. Based on comprehensive research, a series of reports are being prepared for each community to assist in planning effective interventions.

The main components of the study were:

• A household telephone survey of 1700 families with 3–18 year old children,

• De-identified heights and weights measured at public schools,

• Assessment of the food and physical activity environments using objective data.

This report presents the results from the household survey. Reports based on school body mass index (BMI) data and food and physical activity environment data are available at www.cshp.rutgers.edu/childhoodobesity.htm.

Created2010
Description

Many factors influence children’s health behaviors and health outcomes. The Social Ecological Model (SEM) groups these factors into interactive layers, creating a framework for understanding their influence and for designing interventions to achieve positive change. The layers of influence in the SEM include individual, interpersonal, organizational, community, and policy factors.

ContributorsOhri-Vachaspati, Punam (Contributor) / Yedidia, Michael J., 1946- (Contributor) / New Jersey Child Health Study (Contributor, Contributor) / Stevens, Clinton (Contributor) / Rutgers Center for State Health Policy (Contributor) / ASU College of Health Solutions (Contributor)
Created2019-10
280-Thumbnail Image.png
Description

Programs such as the Healthy Corner Store Initiative have been widely adopted in recent years to increase the availability of healthy foods in small retail food stores. Valid and reliable measures are necessary to evaluate the effectiveness of these programs. The validated instruments currently available for assessments require in-person evaluations,

Programs such as the Healthy Corner Store Initiative have been widely adopted in recent years to increase the availability of healthy foods in small retail food stores. Valid and reliable measures are necessary to evaluate the effectiveness of these programs. The validated instruments currently available for assessments require in-person evaluations, with surveys taking up to 30 minutes per store to complete. This instrument was developed by researchers at Arizona State University to simplify the process of evaluating the effectiveness of healthy store interventions, and to enable community partners and practitioners to conduct their own evaluations of food access. The SCAT was validated against an adapted version of the Nutrition Environment Measures Survey for Corner Stores, and tested for feasibility of use over the telephone. The SCAT was found to discriminate between corner stores in the top 20% of healthfulness scores from those in the lower 80% with 89% accuracy.

In 2015 a panel of experts was convened by Healthy Eating Research, a program of the Robert Wood Johnson Foundation, to establish a set of minimum guidelines small retail food stores could reach to be classified as meeting basic or preferred stocking levels. Work is currently in progress to assess how the SCAT scores correlate with basic and preferred levels. 

ContributorsDeWeese, Robin (Creator) / Ohri-Vachaspati, Punam (Creator) / Todd, Michael (Creator) / Karpyn, Allison (Creator) / Yedidia, Michael J., 1946- (Creator) / Kennedy, Michelle (Creator) / Bruening, Meg (Creator) / Wharton, Christopher M. (Creator)
Created2015
294-Thumbnail Image.png
Description

The maps in this chartbook describe the physical activity environment in Camden in terms of geographic distribution of parks and physical activity facilities. Research shows that people who have access to these facilities are more likely to be physically active.

• The maps in this chartbook were created using physical activity facilities data from a commercial

The maps in this chartbook describe the physical activity environment in Camden in terms of geographic distribution of parks and physical activity facilities. Research shows that people who have access to these facilities are more likely to be physically active.

• The maps in this chartbook were created using physical activity facilities data from a commercial database (lnfoUSA, 2008), data from city departments, as well as information obtained from systematic web searches. The maps present data for the city of Camden and for a 1 mile buffer area around Camden.

• Physical activity centers include private and public facilities which offer physical activity opportunities for children 3-18 years of age.

• Physical activity environment maps are compared with Census 2000 data to visualize accessibility of physical activity opportunities in neighborhoods with different characteristics.

• Poverty level presented in this chartbook are based on the 2000 Federal Poverty Guidelines.

• Crime rates in Camden are presented at the census block group level as relative crime risk (CrimeRisk) obtained from a commercial data source (Applied Geographic Solutions, 2008). CrimeRisk - an index value derived from modeling the relationship between crime rates and demographics data - is expressed as the risk of crime occurring in a specific block group relative to the national average. For this chartbook, data on total CrimeRisk, which includes personal and property crimes, are reported.

Created2010