The collection collates collections by schools, centers, programs, and research groups.

Displaying 1 - 10 of 20
Filtering by

Clear all filters

167588-Thumbnail Image.png
Description

For decades, understanding the complexity of behaviors, motivations, and values has interested researchers across various disciplines. So much so that there are numerous terms, frameworks, theories, and studies devoted to understanding these complexities and how they interact and evolve into actions. However, little research has examined how employee behaviors translate

For decades, understanding the complexity of behaviors, motivations, and values has interested researchers across various disciplines. So much so that there are numerous terms, frameworks, theories, and studies devoted to understanding these complexities and how they interact and evolve into actions. However, little research has examined how employee behaviors translate into the work environment, particularly regarding perceived organizational success. This study advances research by quantitatively assessing how a greater number of individual employees’ pro-environmental behaviors are related to the perceived success of environmentally sustainable workplace activities. We have concluded that the more pro-environmental behaviors an employee embodies, the more positively they perceive the success of their local government's sustainable purchasing policy. Additionally, other factors matter, including organizational behaviors, like training, innovation, and reduction of red tape.

ContributorsFox, Angela (Author) / Darnall, Nicole (Thesis advisor) / Bretschneider, Stuart (Committee member) / Behravesh, Shirley-Ann (Committee member) / School of Sustainability (Contributor)
Created2022-04-19
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer (Committee member) / School of Sustainability (Contributor)
Created2022-04-18
Description

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the cooperation of suppliers on efforts like piloting plastic free packaging programs, packaging take back programs, alternative packaging opportunities, or promoting alternative products that contain little-to-no single-use plastic. Creating a proposed approach through identifying strategic external partners, a high-level approach to implementation, and obstacles will impact how future goals and policies are set. Determining impact and added value of the project will help cultivate support from leadership, internal stakeholders, and suppliers. The project focus will include multiple deliverables, but the final output will be a timeline that maps out what plastic streams to eliminate and when to help ASU reach their waste diversion goals. It begins with “low-hanging fruit” like straws and plastic bags and ends with a university free from all non-essential single-use plastic.

ContributorsHarper, Trevor (Author) / Hegde, Sakshi (Author) / McCrossan, Nico (Author) / Knaggs, Cecilia (Author) / Pyne, Chloe (Author) / School of Sustainability (Contributor)
Created2022-05
166145-Thumbnail Image.png
Description

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the cooperation of suppliers on efforts like piloting plastic free packaging programs, packaging take back programs, alternative packaging opportunities, or promoting alternative products that contain little-to-no single-use plastic. Creating a proposed approach through identifying strategic external partners, a high-level approach to implementation, and obstacles will impact how future goals and policies are set. Determining impact and added value of the project will help cultivate support from leadership, internal stakeholders, and suppliers. The project focus will include multiple deliverables, but the final output will be a timeline that maps out what plastic streams to eliminate and when to help ASU reach their waste diversion goals. It begins with “low-hanging fruit” like straws and plastic bags and ends with a university free from all non-essential single-use plastic.

ContributorsHarper, Trevor (Author) / Hegde, Sakshi (Author) / Knaggs, Cecilia (Author) / McCrossan, Nico (Author) / Pyne, Chloe (Author) / School of Sustainability (Contributor)
Created2022-05
166147-Thumbnail Image.png
Description

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the

ASU’s waste diversion goal is 90% by the fiscal year 2025 and will require collaboration across many departments and programs to be successful. Reducing plastic use, especially single-use plastic, is critical in reaching 90% waste diversion in the supply chain. To reduce supply chain single-use plastics, ASU will need the cooperation of suppliers on efforts like piloting plastic free packaging programs, packaging take back programs, alternative packaging opportunities, or promoting alternative products that contain little-to-no single-use plastic. Creating a proposed approach through identifying strategic external partners, a high-level approach to implementation, and obstacles will impact how future goals and policies are set. Determining impact and added value of the project will help cultivate support from leadership, internal stakeholders, and suppliers. The project focus will include multiple deliverables, but the final output will be a timeline that maps out what plastic streams to eliminate and when to help ASU reach their waste diversion goals. It begins with “low-hanging fruit” like straws and plastic bags and ends with a university free from all non-essential single-use plastic.

ContributorsHarper, Trevor (Author) / Hegde, Sakshi (Author) / McCrossan, Nico (Author) / Knaggs, Cecilia (Author) / Pyne, Chloe (Author) / School of Sustainability (Contributor)
Created2022-05
130287-Thumbnail Image.png
Description
Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed

Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed of central Mexico exemplifies both natural and anthropogenic forces enacting variability and change on the landscape. This study employed a time series of Enhanced Vegetation Index (EVI) composites from the Moderate Resolution Imaging Spectoradiometer (MODIS) for 2001–2007 and per-pixel multiple linear regressions in order to model changes in EVI as a function of precipitation, temperature, and elevation. Over the seven-year period, 59.1% of the variability in EVI was explained by variability in the independent variables, with highest model performance among changing and heterogeneous land cover types, while intact forest cover demonstrated the greatest resistance to changes in temperature and precipitation. Model results were compared to an independent change uncertainty assessment, and selected regional samples of change confusion and natural variability give insight to common problems afflicting land change analyses.
Created2016-06-07
130272-Thumbnail Image.png
Description
For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown for some polyphenic insects. In other animals, particularly long-distance bird migrants, it is clear that high-quality food is required to prepare animals for a successful migration. We tested the effect of diet quality on the flight behaviour and morphology of the Mongolian locust, Oedaleus asiaticus. Locusts reared at high population density and fed low-N grass (performance-enhancing for this species) had enhanced migratory morphology relative to locusts fed high-N grass. Furthermore, locusts fed synthetic diets with an optimal 1 : 2 protein : carbohydrate ratio flew for longer times than locusts fed diets with lower or higher protein : carbohydrate ratios. In contrast to the hypothesis that performance-degrading food should enhance migration, our results support the more nuanced hypothesis that high-quality diets promote development of migratory characteristics when migration is physiologically challenging.
ContributorsCease, Arianne (Author) / Harrison, Jon (Author) / Hao, Shuguang (Author) / Niren, Danielle (Author) / Zhang, Guangming (Author) / Kang, Le (Author) / Elser, James (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-06-07
130257-Thumbnail Image.png
Description
Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which

Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which involves the use of fire. This research characterizes land use systems and land cover changes in the Yucatán during the 2000–2010 time period. We used an active fire remotely sensed data time series from the Moderate Resolution Imaging Spectroradiometer (MODIS), in combination with forest loss, and anthrome map sources to (1) establish the association between fire and land use change in the region; and (2) explore links between the spatial and temporal patterns of fire and specific types of land use practices, including within- and between-anthromes variability. A spatial multinomial logit model was constructed using fire, landscape configuration, and a set of commonly used control variables to estimate forest persistence, non-forest persistence, and change. Cross-tabulations and descriptive statistics were used to explore the relationships between fire occurrence, location, and timing with respect to the geography of land use. We also compared fire frequencies within and between anthrome groups using a negative binomial model and Tukey pairwise comparisons. Results show that fire data broadly reproduce the geography and timing of anthropogenic land change. Findings indicate that fire and landscape configuration is useful in explaining forest change and non-forest persistence, especially in fragmented (mosaicked) landscapes. Absence of fire occurrence is related usefully to the persistence of spatially continuous core areas of older growth forest. Fire has a positive relationship with forest to non-forest change and a negative relationship with forest persistence. Fire is also a good indicator to distinguish between anthrome groups (e.g., croplands and villages). Our study suggests that active fire data series are a reasonable proxy for anthropogenic land persistence/change in the context of the Yucatán and are useful to differentiate quantitatively and qualitatively between and within anthromes.
Created2017-09-12
130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
ContributorsZhang, Zijia (Author) / Elser, James (Author) / Cease, Arianne (Author) / Zhang, Ximei (Author) / Yu, Qiang (Author) / Han, Xingguo (Author) / Zhang, Guangming (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2014-08-04
130335-Thumbnail Image.png
Description
A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective

A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations.
ContributorsConlisk, Erin (Author) / Lawson, Dawn (Author) / Syphard, Alexandra D. (Author) / Franklin, Janet (Author) / Flint, Lorraine (Author) / Flint, Alan (Author) / Regan, Helen M. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2012-05-18