The collection collates collections by schools, centers, programs, and research groups.

Displaying 1 - 10 of 51
Filtering by

Clear all filters

141434-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.

Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

ContributorsPettiti, Diana B. (Author) / Hondula, David M. (Author) / Yang, Shuo (Author) / Harlan, Sharon L. (Author) / Chowell, Gerardo (Author)
Created2016-02-01
141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28
141447-Thumbnail Image.png
Description

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53

Preventing heat-associated morbidity and mortality is a public health priority in Maricopa County, Arizona (United States). The objective of this project was to evaluate Maricopa County cooling centers and gain insight into their capacity to provide relief for the public during extreme heat events. During the summer of 2014, 53 cooling centers were evaluated to assess facility and visitor characteristics. Maricopa County staff collected data by directly observing daily operations and by surveying managers and visitors. The cooling centers in Maricopa County were often housed within community, senior, or religious centers, which offered various services for at least 1500 individuals daily. Many visitors were unemployed and/or homeless. Many learned about a cooling center by word of mouth or by having seen the cooling center’s location. The cooling centers provide a valuable service and reach some of the region’s most vulnerable populations. This project is among the first to systematically evaluate cooling centers from a public health perspective and provides helpful insight to community leaders who are implementing or improving their own network of cooling centers.

ContributorsBerisha, Vjollca (Author) / Hondula, David M. (Author) / Roach, Matthew (Author) / White, Jessica R. (Author) / McKinney, Benita (Author) / Bentz, Darcie (Author) / Mohamed, Ahmed (Author) / Uebelherr, Joshua (Author) / Goodin, Kate (Author)
Created2016-09-23
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
Description

The New Jersey Childhood Obesity Study, funded by the Robert Wood Johnson Foundation, aims to provide vital information for planning, implementing and evaluating interventions aimed at preventing childhood obesity in five ew Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by RWJF's New

The New Jersey Childhood Obesity Study, funded by the Robert Wood Johnson Foundation, aims to provide vital information for planning, implementing and evaluating interventions aimed at preventing childhood obesity in five ew Jersey municipalities: Camden, Newark, New Brunswick, Trenton, and Vineland. These five communities are being supported by RWJF's New Jersey Partnership for Healthy Kids program to plan and implement policy and environmental change strategies to prevent childhood obesity.

Effective interventions for addressing childhood obesity require community specific information on who is most at risk and on contributing factors that can be addressed through tailored interventions that meet the needs of the community.

Using a comprehensive research study, the Center for State Health Policy at Rutgers University is working collaboratively with the State Program Office for New Jersey Partnership for Healthy Kids and the five communities to address these information needs. The main components of the study include:

• A household survey of 1700 families with 3 -18 year old children

• De-identified heights and weights data from public school districts

• Assessment of the food and physical activity environments using objective data

Data books and maps based on the results of the study are being shared with the community coalitions in the five communities to help them plan their interventions.

Created2010
The New Jersey Childhood Obesity Study: Food Environment Maps, Camden
Description

The maps in this chartbook describe the food environment in Camden in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially

The maps in this chartbook describe the food environment in Camden in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially available data of food outlets (InfoUSA, 2008 and Trade Dimensions, 2008) in Camden and in a 1 mile buffer area around Camden.

•Using the commercial data and additional investigation, food outlets were classified into different categories based on their likeliliood of carrying healthy choices: supermarkets carry most healthy choices; smaller grocery stores carry fewer healthy choices; convenience stores and limited service restaurants are likely to carry mostly unhealthy choices.

• Access to different types of food outlets was computed at the census block group level based on concentration of stores / restaurants per unit area and is reported as food outlet densities.

•Food outlet density maps are compared with Census 2000 data to visualize accessibility of healthy food s in neighborhoods with different characteristics.

 

Data Sources: Info USA food outlet 2008 data

Trade Dimensions food outlet 2008 data

Census 2000 data

New Jersey Department of Education 2008-2009 data

Created2010-08
The New Jersey Childhood Obesity Study: Food Environment Maps, New Brunswick
Description

The maps in this chartbook describe the food environment in ew Brunswick in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded

The maps in this chartbook describe the food environment in ew Brunswick in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially available data of food outlets (Info USA, 2008 and Trade Dimensions, 2008) in New Brunswick and in a 1 mile buffer area around New Brunswick.

•Using the commercial data and additional investigation, food outlets were classified into different categories based on their likelihood of carrying healthy choices: supermarkets carry most healthy choices; smaller grocery stores carry fewer healthy choices; convenience stores and limited service restaurants are likely to carry mostly unhealthy choices.

• Access to different types of food outlets was computed at the census block group level based on concentration of stores / restaurants per unit area and is reported as food outlet densities.

•Food outlet density maps are compared with Census 2000 data to visualize accessibility of healthy foods in neighborhoods with different characteristics.

 

Data Sources: Info USA food outlet 2008 data

Trade Dimensions food outlet 2008 data

Census 2000 data

New Jersey Department of Education 2008-2009 data

Created2010-08
The New Jersey Childhood Obesity Study: Food Environment Maps, Vineland
Description

The maps in this chartbook describe the food environment in Vineland in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially

The maps in this chartbook describe the food environment in Vineland in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially available data of food outlets (Info USA, 2008 and Trade Dimensions, 2008) in Vineland and in a 1 mile buffer area around Vineland.

•Using the commercial data and additional investigation, food outlets were classified into different categories based on their likelihood of carrying healthy choices: supermarkets carry most healthy choices; smaller grocery stores carry fewer healthy choices; convenience stores and limited service restaurants are likely to carry mostly unhealthy choices.

• Access to different types of food outlets was computed at the census block group level based on concentration of stores / restaurants per unit area and is reported as food outlet densities.

• Food outlet density maps are compared with Census 2000 data to visualize accessibility of healthy foods in neighborhoods with different characteristics.

 

Data Sources: Info USA food outlet 2008 data

Trade Dimensions food outlet 2008 data

Census 2000 data

New Jersey Department of Education 2008-2009 data

Created2010-08
The New Jersey Childhood Obesity Study: Food Environment Maps, Trenton
Description

The maps in this chartbook describe the food environment in Trenton in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

•Food environment maps were created using geo-coded commercially available

The maps in this chartbook describe the food environment in Trenton in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

•Food environment maps were created using geo-coded commercially available data of food outlets (InfoUSA, 2008 and Trade Dimensions, 2008) in Trenton and in a 1 mile buffer area around Trenton.

•Using the commercial data and additional investigation, food outlets were classified into different categories based on their likelihood of carrying healthy choices: supermarkets carry most healthy choices; smaller grocery stores carry fewer healthy choices; convenience stores and limited service restaurants are likely to carry mostly unhealthy choices.

• Access to different types of food outlets was computed at the census block group level based on concentration of stores / restaurants per unit area and is reported as food outlet densities.

•Food outlet density maps are compared with Census 2000 data to visualize accessibility of healthy foods in neighborhoods with different characteristics.

 

Data Sources: Info USA food outlet 2008 data

Trade Dimensions food outlet 2008 data

Census 2000 data

New Jersey Department of Education 2008-2009 data

Created2010-08
The New Jersey Childhood Obesity Study: Food Environment Maps, Newark
Description

The maps in this chartbook describe the food environment in ewark in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially

The maps in this chartbook describe the food environment in ewark in terms of access to supermarkets, smaller grocery stores, convenience stores, and limited service restaurants. Research shows that when residents have access to healthy food outlets, they tend to eat healthy.

• Food environment maps were created using geo-coded commercially available data of food outlets (InfoUSA, 2008 and Trade Dimensions, 2008) in Newark and in a 1 mile buffer area around Newark.

•Using the commercial data and additional investigation, food outlets were classified into different categories based on their likelihood of carrying healthy choices: supermarkets carry most healthy choices; smaller grocery stores carry fewer healthy choices; convenience stores and limited service restaurants are likely to carry mostly unhealthy choices.

• Access to different types of food outlets was computed at the census block group level based on concentration of stores / restaurants per unit area and is reported as food outlet densities.

• Food outlet density maps are compared with Census 2000 data to visualize accessibility of healthy foods in neighborhoods with different characteristics.

Data Sources: Info USA food outlet 2008 data

Trade Dimensions food outlet 2008 data

Census 2000 data

New Jersey Department of Education 2008-2009 data

Created2010-08