The collection collates collections by schools, centers, programs, and research groups.

Displaying 1 - 10 of 31
Filtering by

Clear all filters

Description
Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR.

Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.
Created2015-11-16
130293-Thumbnail Image.png
Description

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic). The experiment had four treatments, each with five spatial replicates – unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P) regimes (P only, N:P = 16 and N:P = 75 by atoms). In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.

ContributorsLee, Zarraz (Author) / Poret-Peterson, Amisha (Author) / Siefert, Janet L. (Author) / Kaul, Drishti (Author) / Moustafa, Ahmed (Author) / Allen, Andrew E. (Author) / Dupont, Chris L. (Author) / Eguiarte, Luis E. (Author) / Souza, Valeria (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2017-05-30
Description
Herbivores face various nutritional challenges in their life cycles, challenges that may become increasingly acute under ongoing environmental changes.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand

Herbivores face various nutritional challenges in their life cycles, challenges that may become increasingly acute under ongoing environmental changes.
Here, focusing on calcium, phosphorus and nitrogen, we used nutritional geometry to analyse individual-based data on foraging and extraction efficiencies, and combined these with data on reproduction and migratory behaviour to understand how a large herbivorous carnivore can complete its life cycle on a narrow and seemingly low quality bamboo diet.
Behavioural results showed that pandas during the year switched between four main food categories involving the leaves and shoots of two bamboo species available. Nutritional analysis suggests that these diet shifts are related to the concentrations and balances of calcium, phosphorus and nitrogen. Notably, successive shifts in range use and food type corresponded with a transition to higher concentrations and/or a more balanced intake of these multiple key constituents.
Our study suggests that pandas obligatorily synchronize their seasonal migration and reproduction with the disjunct nutritional phenologies of two bamboo species. This finding has potentially important implications for habitat conservation for this species and, more generally, draws attention to the need for understanding the nutritional basis of food selection in devising management plans for endangered species.
ContributorsNie, Yonggang (Author) / Zhang, Zejun (Author) / Raubenheimer, David (Author) / Elser, James (Author) / Wei, Wei (Author) / Wei, Fuwen (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-01-01
130258-Thumbnail Image.png
Description

Background
In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number

Background
In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number (R0) for sexual transmission alone is less than 1. Critical to the assessment of outbreak risk, estimation of the potential attack rates, and assessment of control measures, are estimates of the basic reproduction number, R0.
Methods
We estimated the R0 of the 2015 ZIKV outbreak in Barranquilla, Colombia, through an analysis of the exponential rise in clinically identified ZIKV cases (n = 359 to the end of November, 2015).
Findings
The rate of exponential rise in cases was ρ = 0.076 days[superscript −1], with 95% CI [0.066,0.087] days[superscript −1]. We used a vector-borne disease model with additional direct transmission to estimate the R0; assuming the R0 of sexual transmission alone is less than 1, we estimated the total R0 = 3.8 [2.4,5.6], and that the fraction of cases due to sexual transmission was 0.23 [0.01,0.47] with 95% confidence.
Interpretation
This is among the first estimates of R0 for a ZIKV outbreak in the Americas, and also among the first quantifications of the relative impact of sexual transmission.

Created2016-10-17
Description

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from benthic sediments and mats. Recovery yields were between 5% and 40%, as determined from cell counts. The method conserves cellular element contents to within 30% or better, as assessed by comparing C, N, P, Mg, Al, Ca, Ti, Mn, Fe, Ni, Cu, Zn, and Mo contents in Escherichia coli. Contamination by C, N, and P from chemicals used during the procedure was negligible. Na and K were not conserved, being likely exchanged through the cell membrane as cations during separation. V, Cr, and Co abundances could not be determined due to large (>100%) measurement uncertainties. We applied this method to measure elemental contents in extremophilic communities of Yellowstone National Park hot springs. The method was generally successful at separating cells from sediment, but does not discriminate between cells and detrital biological or noncellular material of similar density. This resulted in Al, Ti, Mn, and Fe contamination, which can be tracked using proxies such as metal:Al ratios. With these caveats, we present the first measurements, to our knowledge, of the elemental abundances of a chemosynthetic community. The communities have C:N ratios typical of aquatic microorganisms, are low in P, and their metal abundances vary between hot springs by orders of magnitude.

ContributorsNeveu, Marc (Author) / Poret-Peterson, Amisha (Author) / Lee, Zarraz (Author) / Anbar, Ariel (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
130280-Thumbnail Image.png
Description
A two-patch mathematical model of Dengue virus type 2 (DENV-2) that accounts for vectors’ vertical transmission and between patches human dispersal is introduced. Dispersal is modelled via a Lagrangian approach. A host-patch residence-times basic reproduction number is derived and conditions under which the disease dies out or persists are established.

A two-patch mathematical model of Dengue virus type 2 (DENV-2) that accounts for vectors’ vertical transmission and between patches human dispersal is introduced. Dispersal is modelled via a Lagrangian approach. A host-patch residence-times basic reproduction number is derived and conditions under which the disease dies out or persists are established. Analytical and numerical results highlight the role of hosts’ dispersal in mitigating or exacerbating disease dynamics. The framework is used to explore dengue dynamics using, as a starting point, the 2002 outbreak in the state of Colima, Mexico.
Created2016-08-05
130275-Thumbnail Image.png
Description
Surveys of carbon:nitrogen:phosphorus ratios are available now for major groups of biota and for various aquatic and terrestrial biomes. However, while fungi play an important role in nutrient cycling in ecosystems, relatively little is known about their C:N:P stoichiometry and how it varies across taxonomic groups, functional guilds, and environmental

Surveys of carbon:nitrogen:phosphorus ratios are available now for major groups of biota and for various aquatic and terrestrial biomes. However, while fungi play an important role in nutrient cycling in ecosystems, relatively little is known about their C:N:P stoichiometry and how it varies across taxonomic groups, functional guilds, and environmental conditions. Here we present the first systematic compilation of C:N:P data for fungi including four phyla (Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota). The C, N, and P contents (percent of dry mass) of fungal biomass varied from 38 to 57%, 0.23 to 15%, and 0.040 to 5.5%, respectively. Median C:N:P stoichiometry for fungi was 250:16:1 (molar), remarkably similar to the canonical Redfield values. However, we found extremely broad variation in fungal C:N:P ratios around the central tendencies in C:N:P ratios. Lower C:P and N:P ratios were found in Ascomycota fungi than in Basidiomycota fungi while significantly lower C:N ratios (p < 0.05) and higher N:P ratios (p < 0.01) were found in ectomycorrhizal fungi than in saprotrophs. Furthermore, several fungal stoichiometric ratios were strongly correlated with geographic and abiotic environmental factors, especially latitude, precipitation, and temperature. The results have implications for understanding the roles that fungi play in function in symbioses and in soil nutrient cycling. Further work is needed on the effects of actual in situ growth conditions of fungal growth on stoichiometry in the mycelium.
ContributorsZhang, Ji (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-07-14
130272-Thumbnail Image.png
Description
For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown for some polyphenic insects. In other animals, particularly long-distance bird migrants, it is clear that high-quality food is required to prepare animals for a successful migration. We tested the effect of diet quality on the flight behaviour and morphology of the Mongolian locust, Oedaleus asiaticus. Locusts reared at high population density and fed low-N grass (performance-enhancing for this species) had enhanced migratory morphology relative to locusts fed high-N grass. Furthermore, locusts fed synthetic diets with an optimal 1 : 2 protein : carbohydrate ratio flew for longer times than locusts fed diets with lower or higher protein : carbohydrate ratios. In contrast to the hypothesis that performance-degrading food should enhance migration, our results support the more nuanced hypothesis that high-quality diets promote development of migratory characteristics when migration is physiologically challenging.
ContributorsCease, Arianne (Author) / Harrison, Jon (Author) / Hao, Shuguang (Author) / Niren, Danielle (Author) / Zhang, Guangming (Author) / Kang, Le (Author) / Elser, James (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-06-07
130264-Thumbnail Image.png
Description
Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein

Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC) genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human populations, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpanzees, we sequenced 17 WFDC genes and 47 autosomal pseudogenes in 68 chimpanzees (15 P. t. troglodytes, 22 P. t. verus, and 31 P. t. ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in 0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar footprints of selection across the WFDC locus, possibly due to different selective pressures between the two species related to immune response and reproductive biology.
Created2013-12-19
130261-Thumbnail Image.png
Description
The growth rate hypothesis predicts that organisms with higher maximum growth rates will also have higher body percent phosphorus (P) due to the increased demand for ribosomal RNA production needed to sustain rapid growth. However, this hypothesis was formulated for invertebrates growing at the same temperature. Within a biologically relevant

The growth rate hypothesis predicts that organisms with higher maximum growth rates will also have higher body percent phosphorus (P) due to the increased demand for ribosomal RNA production needed to sustain rapid growth. However, this hypothesis was formulated for invertebrates growing at the same temperature. Within a biologically relevant temperature range, increased temperatures can lead to more rapid growth, suggesting that organisms in warmer environments might also contain more P per gram of dry mass. However, since higher growth rates at higher temperature can be supported by more rapid protein synthesis per ribosome rather than increased ribosome investment, increasing temperature might not lead to a positive relationship between growth and percent P. We tested the growth rate hypothesis by examining two genera of Neotropical stream grazers, the leptophlebiid mayfly Thraulodes and the bufonid toad tadpole Rhinella. We measured the body percent P of field-collected Thraulodes as well as the stoichiometry of periphyton resources in six Panamanian streams over an elevational gradient spanning approximately 1,100 m and 7°C in mean annual temperature. We also measured Thraulodes growth rates using in situ growth chambers in two of these streams. Finally, we conducted temperature manipulation experiments with both Thraulodes and Rhinella at the highest and lowest elevation sites and measured differences in percent P and growth rates. Thraulodes body percent P increased with temperature across the six streams, and average specific growth rate was higher in the warmer lowland stream. In the temperature manipulation experiments, both taxa exhibited higher growth rate and body percent P in the lowland experiments regardless of experimental temperature, but growth rate and body percent P of individuals were not correlated. Although we found that Thraulodes from warmer streams grew more rapidly and had higher body percent P, our experimental results suggest that the growth rate hypothesis does not apply across temperatures. Instead, our results indicate that factors other than temperature drive variation in organismal percent P among sites.
ContributorsMoody, Eric (Author) / Rugenski, Amanda (Author) / Sabo, John (Author) / Turner, Benjamin L. (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-04-18