The collection collates collections by schools, centers, programs, and research groups.

Displaying 1 - 10 of 34
Filtering by

Clear all filters

Description
Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR.

Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.
Created2015-11-16
130258-Thumbnail Image.png
Description

Background
In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number

Background
In 2015, the Zika arbovirus (ZIKV) began circulating in the Americas, rapidly expanding its global geographic range in explosive outbreaks. Unusual among mosquito-borne diseases, ZIKV has been shown to also be sexually transmitted, although sustained autochthonous transmission due to sexual transmission alone has not been observed, indicating the reproduction number (R0) for sexual transmission alone is less than 1. Critical to the assessment of outbreak risk, estimation of the potential attack rates, and assessment of control measures, are estimates of the basic reproduction number, R0.
Methods
We estimated the R0 of the 2015 ZIKV outbreak in Barranquilla, Colombia, through an analysis of the exponential rise in clinically identified ZIKV cases (n = 359 to the end of November, 2015).
Findings
The rate of exponential rise in cases was ρ = 0.076 days[superscript −1], with 95% CI [0.066,0.087] days[superscript −1]. We used a vector-borne disease model with additional direct transmission to estimate the R0; assuming the R0 of sexual transmission alone is less than 1, we estimated the total R0 = 3.8 [2.4,5.6], and that the fraction of cases due to sexual transmission was 0.23 [0.01,0.47] with 95% confidence.
Interpretation
This is among the first estimates of R0 for a ZIKV outbreak in the Americas, and also among the first quantifications of the relative impact of sexual transmission.

Created2016-10-17
ContributorsChaudhari, Mahesh B (Author) / Dietrich, Suzanne Wagner (Author)
Created2014-08-31