The collection collates collections by schools, centers, programs, and research groups.

Displaying 1 - 10 of 45
Filtering by

Clear all filters

130293-Thumbnail Image.png
Description

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic). The experiment had four treatments, each with five spatial replicates – unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P) regimes (P only, N:P = 16 and N:P = 75 by atoms). In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.

ContributorsLee, Zarraz (Author) / Poret-Peterson, Amisha (Author) / Siefert, Janet L. (Author) / Kaul, Drishti (Author) / Moustafa, Ahmed (Author) / Allen, Andrew E. (Author) / Dupont, Chris L. (Author) / Eguiarte, Luis E. (Author) / Souza, Valeria (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor)
Created2017-05-30
Description
Microalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy
expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated
as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty
acid methyl ester (FAME) by as much as 16-fold vs. untreated

Microalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy
expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated
as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty
acid methyl ester (FAME) by as much as 16-fold vs. untreated biomass using isopropanol extraction, and
nearly 100% FAME recovery was possible without any Folch solvent, which is toxic and expensive. Surfactant
treatment caused cell disruption and morphological changes to the cell membrane, as documented by
transmission electron microscopy and flow cytometry. Surfactant treatment made it possible to extract wet
biomass at room temperature, which avoids the expense and energy cost associated with heating
and drying of biomass during the extraction process. The best FAME recovery was obtained from highlipid
biomass treated with Myristyltrimethylammonium bromide (MTAB)- and 3-(decyldimethylammonio)-
propanesulfonate inner salt (3_DAPS)-surfactants using a mixed solvent (hexane : isopropanol = 1 : 1, v/v)
vortexed for just 1 min; this was as much as 160-fold higher than untreated biomass. The critical micelle
concentration of the surfactants played a major role in dictating extraction performance, but the growth
stage of the biomass had an even larger impact on how well the surfactants disrupted the cells and
improved lipid extraction. Surfactant treatment had minimal impact on extracted-FAME profiles and,
consequently, fuel-feedstock quality. This work shows that surfactant treatment is a promising strategy for
more efficient, sustainable, and economical extraction of fuel feedstock from microalgae.
Created2015-10-20
Description
Using a CH[subscript 4]-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO[subscript 4]–) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO[subscript 3]–) and nitrite (NO[subscript 2]–) surface loadings on ClO[subscript 4]– reduction and on the biofilm community’s mechanism

Using a CH[subscript 4]-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO[subscript 4]–) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO[subscript 3]–) and nitrite (NO[subscript 2]–) surface loadings on ClO[subscript 4]– reduction and on the biofilm community’s mechanism for ClO[subscript 4]– reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO[subscript 4]– to a nondetectable level using CH[subscript 4] as the only electron donor and carbon source when CH[subscript 4] delivery was not limiting; NO[subscript 3]– was completely reduced as well when its surface loading was ≤0.32 g N/m[superscript 2]-d. When CH[subscript 4] delivery was limiting, NO[subscript 3]– inhibited ClO[subscript 4]– reduction by competing for the scarce electron donor. NO[subscript 2]– inhibited ClO[subscript 4]– reduction when its surface loading was ≥0.10 g N/m[superscript 2]-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO[subscript 4]–-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO[subscript 4]– reduction by the MBfR biofilm involved chlorite (ClO[subscript 2]–) dismutation to generate the O[subscript 2] needed as a cosubstrate for the mono-oxygenation of CH[subscript 4].
ContributorsLuo, Yi-Hao (Author) / Chen, Ran (Author) / Wen, Li-Lian (Author) / Meng, Fan (Author) / Zhang, Yin (Author) / Lai, Chun-Yu (Author) / Rittmann, Bruce (Author) / Zhao, He-Ping (Author) / Zheng, Ping (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-02-17
Description
To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or

To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2–4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate.
ContributorsPark, Seongjun (Author) / Chung, Jinwook (Author) / Rittmann, Bruce (Author) / Bae, Wookeun (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-01-01
Description

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from benthic sediments and mats. Recovery yields were between 5% and 40%, as determined from cell counts. The method conserves cellular element contents to within 30% or better, as assessed by comparing C, N, P, Mg, Al, Ca, Ti, Mn, Fe, Ni, Cu, Zn, and Mo contents in Escherichia coli. Contamination by C, N, and P from chemicals used during the procedure was negligible. Na and K were not conserved, being likely exchanged through the cell membrane as cations during separation. V, Cr, and Co abundances could not be determined due to large (>100%) measurement uncertainties. We applied this method to measure elemental contents in extremophilic communities of Yellowstone National Park hot springs. The method was generally successful at separating cells from sediment, but does not discriminate between cells and detrital biological or noncellular material of similar density. This resulted in Al, Ti, Mn, and Fe contamination, which can be tracked using proxies such as metal:Al ratios. With these caveats, we present the first measurements, to our knowledge, of the elemental abundances of a chemosynthetic community. The communities have C:N ratios typical of aquatic microorganisms, are low in P, and their metal abundances vary between hot springs by orders of magnitude.

ContributorsNeveu, Marc (Author) / Poret-Peterson, Amisha (Author) / Lee, Zarraz (Author) / Anbar, Ariel (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
Description

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

ContributorsYoung, Michelle (Author) / Marcus, Andrew (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2013-08-13
130298-Thumbnail Image.png
Description
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity,

The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size.
ContributorsAbdallah, Bahige (Author) / Zatsepin, Nadia (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Conrad, Chelsie (Author) / Dorner, Katerina (Author) / Sierra, Raymond G. (Author) / Stevenson, Hilary P. (Author) / Camacho Alanis, Fernanda (Author) / Grant, Thomas D. (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Calero, Guillermo (Author) / Wachter, Rebekka (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Ros, Alexandra (Author) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-08-19
130294-Thumbnail Image.png
Description
Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory,

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.
Created2017-04-20
130291-Thumbnail Image.png
Description
pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or

pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut.
Created2017-05-03
130290-Thumbnail Image.png
Description

Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted

Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion.

Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10[superscript 12] cm and the evolution is ended. In all cases where mass ejection occurs, the mass of the ejecta is far less than the mass of the accreted material. Therefore, all the WDs are growing in mass. It is also found that the accretion time to explosion can be sufficiently short for a 1.0M[subscript ⊙] WD that recurrent novae can occur on a low mass WD. This mass is lower than typically assumed for the WDs in recurrent nova systems. Finally, the predicted surface temperatures when the WD is near the peak of the explosion imply that only the most massive WDs will be significant X-ray emitters at this time.

Created2014-02-25