This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

152071-Thumbnail Image.png
Description
The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first study investigated the effect of magnitude, direction, and axis of rotation on precision grip responses to unexpected rotational perturbations of a grasped object. A robust "catch-up response" (a rapid, pulse-like increase in grip force rate previously reported only for translational perturbations) was observed whose strength scaled with the axis of rotation. Using two haptic robots, we then investigated the effects of grip surface friction, axis, and direction of perturbation on precision grip responses for unexpected translational and rotational perturbations for three different hand-centric axes. A robust catch-up response was observed for all axes and directions for both translational and rotational perturbations. Grip surface friction had no effect on the stereotypical catch-up response. Finally, we characterized the passive properties of the precision grip-object system via robot-imposed impulse perturbations. The hand-centric axis associated with the greatest translational stiffness was different than that for rotational stiffness. This work expands our understanding of the passive and active features of precision grip, a hallmark of human dexterous manipulation. Biological insights such as these could be used to enhance the functionality of artificial hands and the quality of life for upper extremity amputees.
ContributorsDe Gregorio, Michael (Author) / Santos, Veronica J. (Thesis advisor) / Artemiadis, Panagiotis K. (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Helms Tillery, Stephen I. (Committee member) / Arizona State University (Publisher)
Created2013
151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
155363-Thumbnail Image.png
Description
Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective

Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities.

To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.
ContributorsWilson, Sean Thomas (Author) / Berman, Spring M (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Sugar, Thomas (Committee member) / Rodriguez, Armando A (Committee member) / Taylor, Jesse (Committee member) / Arizona State University (Publisher)
Created2017
168429-Thumbnail Image.png
Description
While pulse oximeter technology is not necessarily an area of new technology, advancements in performance and package of pulse sensors have been opening up the opportunities to use these sensors in locations other than the traditional finger monitoring location. This research report examines the full potential of creating a

While pulse oximeter technology is not necessarily an area of new technology, advancements in performance and package of pulse sensors have been opening up the opportunities to use these sensors in locations other than the traditional finger monitoring location. This research report examines the full potential of creating a minimally invasive physiological and environmental observance method from the ear location. With the use of a pulse oximeter and accelerometer located within the ear, there is the opportunity to provide a more in-depth means to monitor a pilot for a Gravity-Induced Loss of Consciousness (GLOC) scenario while not adding any new restriction to the pilot's movement while in flight. Additionally, building from the GLOC scenario system, other safety monitoring systems for military and first responders are explored by alternating the physiological and environmental sensors. This work presents the design and development of hardware, signal processing algorithms, prototype development, and testing results of an in-ear wearable physiological sensor.
ContributorsNichols, Kevin (Author) / Redkar, Sangram (Thesis advisor) / Tripp Jr., Llyod (Committee member) / Dwivedi, Prabha (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
171564-Thumbnail Image.png
Description
There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several

There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several applications for wearable sensor networks presented in this paper. The study will also present a motion capture system using inertial measurement units (IMUs) and a pressure-sensing insole with a control system for gait assistance using wearable sensors. This presentation will provide details on the implementation and calibration of the pressure-sensitive insole, the IMU-based motion capture system, as well as the hip exoskeleton robot. Furthermore, the estimation of the Ground Reaction Force (GRF) from the insole design and implementation of the motion tracking using quaternion will be discussed in this document.
ContributorsLi, Xunguang (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2022
189283-Thumbnail Image.png
Description
This research proposes some new data-driven control methods to control a nonlinear dynamic model. The nonlinear dynamic model linearizes by using the Koopman theory. The Koopman operator is the most important part of designing the Koopman theory. The data mode decomposition (DMD) is used to obtain the Koopman operator. The

This research proposes some new data-driven control methods to control a nonlinear dynamic model. The nonlinear dynamic model linearizes by using the Koopman theory. The Koopman operator is the most important part of designing the Koopman theory. The data mode decomposition (DMD) is used to obtain the Koopman operator. The proposed data-driven control method applies to different nonlinear systems such as microelectromechanical systems (MEMS), Worm robots, and 2 degrees of freedom (2 DoF) robot manipulators to verify the performance of the proposed method. For the MEMS gyroscope, three control methods are applied to the linearized dynamic model by the Koopman theory: linear quadratic regulator (LQR), compound fractional PID sliding mode control, and fractional order PID controller tuned with bat algorithm. For the Worm robot, an LQR controller is proposed to control the linearized dynamic model by the Koopman theory. A new fractional sliding mode control is proposed to control the 2 DoF arm robot. All the proposed controllers applied to the linearized dynamic model by the Kooman theory are compared with some conventional proposed controllers such as PID, sliding mode control, and conventional fractional sliding mode control to verify the performance of the proposed controllers. Simulation results validate their performance in high tracking performance, low tracking error, low frequency, and low maximum overshoot.
ContributorsRahmani, Mehran (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / C. Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2023
187616-Thumbnail Image.png
Description
Photoplethysmography (PPG) is a noninvasive optical signal that measures the change in blood volume. This particular signal can be interpreted to yield heart rate (HR) information which is commonly used in medical settings and diagnostics through wearable devices. The noninvasive nature of the measurement of the signal however causes it

Photoplethysmography (PPG) is a noninvasive optical signal that measures the change in blood volume. This particular signal can be interpreted to yield heart rate (HR) information which is commonly used in medical settings and diagnostics through wearable devices. The noninvasive nature of the measurement of the signal however causes it to be susceptible to noise sources such as motion artifacts (MA). This research starts by describing an end-to-end embedded HR estimation system that leverages noisy PPG and accelerometer data through machine learning (ML) to estimate HR. Through embedded ML for HR estimation, the limitations and challenges are highlighted, and a different HR estimation method is proposed. Next, a point-based value iteration (PBVI) framework is proposed to optimally select HR estimation filters based on the observed user activity. Lastly, the underlying dynamics of the PPG are explored in order to create a sparse dynamic expression of the PPG signal, which can be used to simulate PPG data to improve ML or remove MA from PPG.
ContributorsSindorf, Jacob (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Phatak, Amar (Committee member) / Arizona State University (Publisher)
Created2023
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
171662-Thumbnail Image.png
Description
This document is the culmination of research into small unmanned Powered Parachute aerial vehicles. This dissertation serves to provide designers of small systems with an approach to developing a Powered Parachute Unmanned Aerial Vehicle system, guiding them through the basic assumptions, dynamics, and control method. In addition, this dissertation aims

This document is the culmination of research into small unmanned Powered Parachute aerial vehicles. This dissertation serves to provide designers of small systems with an approach to developing a Powered Parachute Unmanned Aerial Vehicle system, guiding them through the basic assumptions, dynamics, and control method. In addition, this dissertation aims to generate a reliable and generalized framework of dynamic design and control methods for autonomous Powered Parachute aircraft. The simulation methods in this paper assist in developing a consistent and robust unmanned system for applying Powered Parachutes as an alternative to multirotor or fixed-wing aircraft.The first chapter serves as a primer on the historical applications of small Unmanned Systems and Powered Parachutes and gives an overview of the requirements for building an autonomous Powered Parachutes; the information within this chapter provides justification background for the second chapter on Powered Parachute dynamics. In the dynamics chapter, equations of motion are derived using engineering first principles. This chapter also discusses alternative methods of improving the control and robustness of the Powered Parachute airframe. The dynamics model is used in all further chapters to develop a generalized control system to operate such a model autonomously. Chapter three of this document focuses on developing simulations from the dynamics described in the previous chapter, laying the groundwork for guidance, navigation, and control algorithms ahead. Chapters four and onwards refine the autonomous control of the Powered Parachute aircraft for real-world scenarios, discussing correction factors and minimizing the errors present in current sensor systems. Chapter five covers the development of an additional adaptive controller which uses a Sigma-Pi Neural network integrated into the final control loop. Chapter six develops advanced control methods for the Powered Parachute airframe, including simulations on a novel proposed thrust vectoring method. Finally, chapter seven discusses results accumulated from testing an experimental prototype.
ContributorsFiedler, Brett (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Phatak, Amar (Committee member) / Arizona State University (Publisher)
Created2022