Description
While pulse oximeter technology is not necessarily an area of new technology, advancements in performance and package of pulse sensors have been opening up the opportunities to use these sensors in locations other than the traditional finger monitoring location.

While pulse oximeter technology is not necessarily an area of new technology, advancements in performance and package of pulse sensors have been opening up the opportunities to use these sensors in locations other than the traditional finger monitoring location. This research report examines the full potential of creating a minimally invasive physiological and environmental observance method from the ear location. With the use of a pulse oximeter and accelerometer located within the ear, there is the opportunity to provide a more in-depth means to monitor a pilot for a Gravity-Induced Loss of Consciousness (GLOC) scenario while not adding any new restriction to the pilot's movement while in flight. Additionally, building from the GLOC scenario system, other safety monitoring systems for military and first responders are explored by alternating the physiological and environmental sensors. This work presents the design and development of hardware, signal processing algorithms, prototype development, and testing results of an in-ear wearable physiological sensor.
Reuse Permissions
  • Downloads
    pdf (19.5 MB)

    Details

    Title
    • Development of an In-Ear Wearable Physiological Sensor
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2021
    • Field of study: Systems Engineering

    Machine-readable links