This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017
189397-Thumbnail Image.png
Description
Pollinator populations globally have declined at concerning rates in recent years, which is problematic given that roughly a third of all food production depends on them. Managed honey bee colony losses in particular have alarmed beekeepers and scientists, especially in the United States. Widespread agrochemical use has been implicated as

Pollinator populations globally have declined at concerning rates in recent years, which is problematic given that roughly a third of all food production depends on them. Managed honey bee colony losses in particular have alarmed beekeepers and scientists, especially in the United States. Widespread agrochemical use has been implicated as one of the major causes of these colony losses. While the lethal effects of agrochemicals often receive the most attention, sublethal effects can occur at lower doses and can substantially weaken colonies over time. Impaired associative learning ability is a sublethal effect of a number of agrochemicals, and is particularly concerning, as it may hinder the abilities of bees to forage for food or find their way back to the colony. Here, I focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin), which is sprayed on honey bee-pollinated crops during bloom and is known to poison bee mitochondria at ppm levels. First, I show that Pristine® impairs performance on an associative learning assay in the laboratory. Next, I show that Pristine® alters carbohydrate absorption in honey bees, providing a possible mechanism underlying this impaired learning performance. Finally, I demonstrate that Pristine® interacts with high temperatures to induce homing failure in exposed bees. My results raise concerns that this common fungicide may not be safe for pollinators and will be relevant to policymakers as they make decisions surrounding the regulation of fungicide use in agriculture.
ContributorsDesJardins, Nicole (Author) / Harrison, Jon F (Thesis advisor) / Smith, Brian H (Thesis advisor) / DeGrandi-Hoffman, Gloria (Committee member) / DeNardo, Dale (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
158019-Thumbnail Image.png
Description
Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony.

Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony. Although mechanisms that facilitate the communication of the presence of a fertile queen to all members of the colony have been highly studied, those studies have often overlooked the added challenge faced by polydomous species, which divide their nests across as many as one hundred satellite nests resulting in workers potentially having infrequent contact with the queen. In these polydomous contexts, regulatory phenotypes must extend beyond the immediate spatial influence of the queen.

This work investigates mechanisms that can extend the spatial reach of fertility signaling and reproductive regulation in three polydomous ant species. In Novomessor cockerelli, the presence of larvae but not eggs is shown to inhibit worker reproduction. Then, in Camponotus floridanus, 3-methylheptacosane found on the queen cuticle and queen-laid eggs is verified as a releaser pheromone sufficient to disrupt normally occurring aggressive behavior toward foreign workers. Finally, the volatile and cuticular hydrocarbon pheromones present on the cuticle of Oecophylla smaragdina queens are shown to release strong attraction response by workers; when coupled with previous work, this result suggests that these chemicals may underly both the formation of a worker retinue around the queen as well as egg-located mechanisms of reproductive regulation in distant satellite nests. Whereas most previous studies have focused on the short-range role of hydrocarbons on the cuticle of the queen, these studies demonstrate that eusocial insects may employ longer range regulatory mechanisms. Both queen volatiles and distributed brood can extend the range of queen fertility signaling, and the use of larvae for fertility signaling suggest that feeding itself may be a non-chemical mechanism for reproductive regulation. Although trail laying in mass-recruiting ants is often used as an example of complex communication, reproductive regulation in ants may be a similarly complex example of insect communication, especially in the case of large, polydomous ant colonies.
ContributorsEbie, Jessica (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Thesis advisor) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2020