Description
Pollinator populations globally have declined at concerning rates in recent years, which is problematic given that roughly a third of all food production depends on them. Managed honey bee colony losses in particular have alarmed beekeepers and scientists, especially in

Pollinator populations globally have declined at concerning rates in recent years, which is problematic given that roughly a third of all food production depends on them. Managed honey bee colony losses in particular have alarmed beekeepers and scientists, especially in the United States. Widespread agrochemical use has been implicated as one of the major causes of these colony losses. While the lethal effects of agrochemicals often receive the most attention, sublethal effects can occur at lower doses and can substantially weaken colonies over time. Impaired associative learning ability is a sublethal effect of a number of agrochemicals, and is particularly concerning, as it may hinder the abilities of bees to forage for food or find their way back to the colony. Here, I focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin), which is sprayed on honey bee-pollinated crops during bloom and is known to poison bee mitochondria at ppm levels. First, I show that Pristine® impairs performance on an associative learning assay in the laboratory. Next, I show that Pristine® alters carbohydrate absorption in honey bees, providing a possible mechanism underlying this impaired learning performance. Finally, I demonstrate that Pristine® interacts with high temperatures to induce homing failure in exposed bees. My results raise concerns that this common fungicide may not be safe for pollinators and will be relevant to policymakers as they make decisions surrounding the regulation of fungicide use in agriculture.
Reuse Permissions
  • Downloads
    pdf (2.4 MB)

    Details

    Title
    • Sublethal Behavioral and Physiological Effects of an Agricultural Fungicide on Honey Bees
    Contributors
    Date Created
    2023
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2023
    • Field of study: Biology

    Machine-readable links