Matching Items (18)
Filtering by

Clear all filters

149440-Thumbnail Image.png
Description
This study investigated the effect of two different preparation methods on hitting performance in a high&ndashfidelity; baseball batting simulation. Novice and expert players participated in one of three conditions: observation (viewing a video of the goal action), visualization (hearing a script of the goal action), or a no&ndashpreparation; control group.

This study investigated the effect of two different preparation methods on hitting performance in a high&ndashfidelity; baseball batting simulation. Novice and expert players participated in one of three conditions: observation (viewing a video of the goal action), visualization (hearing a script of the goal action), or a no&ndashpreparation; control group. Each participant completed three different hitting tasks: pull hit, opposite&ndashfield; hit, and sacrifice fly. Experts had more successful hits, overall, than novices. The number of successful hits was significantly higher for both the observation and visualization conditions than for the control. In most cases, performance was best in the observation condition. Experts demonstrated greater effects from the mental preparation techniques compared to novices. However, these effects were mediated by task difficulty. The difference between experts and novices, as well as the difference between the observation and visualization conditions was greater for the more difficult hitting task (opposite&ndashfield; hitting) than for the easier hitting task (sacrifice fly). These effects of mental preparation were associated with significant changes in batting kinematics (e.g., changes in point of bat/ball contact and swing direction). The results indicate that mental preparation can improve directional hitting ability in baseball with the optimal preparation methods depending on skill&ndashlevel; and task difficulty.
ContributorsNeuman, Brooke Leigh Anne (Author) / Gray, Rob (Thesis advisor) / Branaghan, Russell (Committee member) / Becker, Vaughn (Committee member) / Arizona State University (Publisher)
Created2010
149433-Thumbnail Image.png
Description
Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as

Motor-respiratory coordination is the synchronization of movement and breathing during exercise. The relation between movement and breathing can be described using relative phase, a measure of the location in the movement cycle relative to the location in the breathing cycle. Stability in that relative phase relation has been identified as important for aerobic efficiency. However, performance can be overly attracted to stable relative phases, preventing the performance or learning of more complex patterns. Little research exists on relative phase dynamics in motor-respiratory coordination, although those observations underscore the importance of learning more. In contrast, there is an extensive literature on relative phase dynamics in interlimb coordination. The accuracy and stability of different relative phases, transitions between patterns, and asymmetries between components are well understood. Theoretically, motor-respiratory and interlimb coordination may share dynamical properties that operate in their different physiological substrates. An existing model of relative phase dynamics in interlimb coordination, the Haken, Kelso, Bunz model, was used to gain an understanding of relative phase dynamics in the less-researched motor-respiratory coordination. Experiments 1 and 2 were designed to examine the interaction of frequency asymmetries between movement and breathing with relative phase and frequency, respectively. In Experiment 3, relative phase stability and transitions in motor-respiratory coordination were explored. Perceptual constraints on differences in stability were investigated in Experiment 4. Across experiments, contributions relevant to questions of coordinative variability were made using a dynamical method called cross recurrence quantification analysis. Results showed much consistency with predictions from an asymmetric extension of the Haken, Kelso, Bunz model and theoretical interpretation in the interlimb coordination literature, including phase wandering, intermittency, and an interdependence of perception and action. There were, however, notable exceptions that indicated stability can decrease with more natural frequency asymmetries and the connection of cross recurrence measures to categories of variability needs further clarification. The complex relative phase dynamics displayed in this study suggest that movement and breathing are softly-assembled by functional constraints and indicate that motor-respiratory coordination is a self-organized system.
ContributorsHessler, Eric Edward (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Glenberg, Arthur M. (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2010
161593-Thumbnail Image.png
Description
In an ever-faster world, products that are designed for enhancing the speed of a certain task can and are being designed in rapid iterations by means of adding or modifying features that impact the energetics, kinematics and kinetics of a given product. Given the ubiquity of said changes and the

In an ever-faster world, products that are designed for enhancing the speed of a certain task can and are being designed in rapid iterations by means of adding or modifying features that impact the energetics, kinematics and kinetics of a given product. Given the ubiquity of said changes and the need to market these products in a very crowded marketplace, it is imperative for the products to communicate the ‘speed’ of the additional features. Thus, it has been hypothesized that adding a few simple changes to the visual representation of a product or the context in which it is being presented could enhance the perception of the product dynamics at a cognitive or emotional level. The present work is aimed at determining the impact of visual elements such as shapes, colors, and textures on the perception of speed. Three hundred and twenty subjects participated in a discrimination task and a reaction task to measure the impact of various patterns, textures, and colors on the perception of speed. Throughout both tasks, the subjects were exposed to a number of various visual patterns or colors presented as a static background or recognizable object for a set amount of time. Based on the subjects’ performance we have identified and quantified the impact of specific visual design patterns and colors on the perception of speed. Primary results indicate promising evidence that certain fundamental visual elements of shape, color, and texture when presented as a static background or object design could induce subtle changes in visual perception that can alter the overall movement dynamics perception.
ContributorsBaldwin, Brooke (Author) / Coza, Aurel (Thesis advisor) / Becker, David (Thesis advisor) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2021
172009-Thumbnail Image.png
Description
Cyber operations are a complex sociotechnical system where humans and computers are operating in an environments in constant flux, as new technology and procedures are applied. Once inside the network, establishing a foothold, or beachhead, malicious actors can collect sensitive information, scan targets, and execute an attack.Increasing defensive capabilities through

Cyber operations are a complex sociotechnical system where humans and computers are operating in an environments in constant flux, as new technology and procedures are applied. Once inside the network, establishing a foothold, or beachhead, malicious actors can collect sensitive information, scan targets, and execute an attack.Increasing defensive capabilities through cyber deception shows great promise by providing an opportunity to delay and disrupt an attacker once network perimeter security has already been breached. Traditional Human Factors research and methods are designed to mitigate human limitations (e.g., mental, physical) to improve performance. These methods can also be used combatively to upend performance. Oppositional Human Factors (OHF), seek to strategically capitalize on cognitive limitations by eliciting decision-making errors and poor usability. Deceptive tactics to elicit decision-making biases might infiltrate attacker processes with uncertainty and make the overall attack economics unfavorable and cause an adversary to make mistakes and waste resources. Two online experimental platforms were developed to test the Sunk Cost Fallacy in an interactive, gamified, and abstracted version of cyber attacker activities. This work presents the results of the Cypher platform. Offering a novel approach to understand decision-making and the Sunk Cost Fallacy influenced by factors of uncertainty, project completion and difficulty on progress decisions. Results demonstrate these methods are effective in delaying attacker forward progress, while further research is needed to fully understand the context in which decision-making limitations do and do not occur. The second platform, Attack Surface, is described. Limitations and lessons learned are presented for future work.
ContributorsJohnson, Chelsea Kae (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy (Committee member) / Shade, Temmie (Committee member) / Ferguson-Walter, Kimberly (Committee member) / Roscoe, Rod (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2022
171724-Thumbnail Image.png
Description
Human-robot teams (HRTs) have seen more frequent use over the past few years,specifically, in the context of Search and Rescue (SAR) environments. Trust is an important factor in the success of HRTs. Both trust and reliance must be appropriately calibrated for the human operator to work faultlessly with a robot

Human-robot teams (HRTs) have seen more frequent use over the past few years,specifically, in the context of Search and Rescue (SAR) environments. Trust is an important factor in the success of HRTs. Both trust and reliance must be appropriately calibrated for the human operator to work faultlessly with a robot teammate. In highly complex and time restrictive environments, such as a search and rescue mission following a disaster, uncertainty information may be given by the robot in the form of confidence to help properly calibrate trust and reliance. This study seeks to examine the impact that confidence information may have on trust and how it may help calibrate reliance in complex HRTs. Trust and reliance data were gathered using a simulated SAR task environment for participants who then received confidence information from the robot for one of two missions. Results from this study indicated that trust was higher when participants received confidence information from the robot, however, no clear relationship between confidence and reliance were found. The findings from this study can be used to further improve human-robot teaming in search and rescue tasks.
ContributorsWolff, Alexandra (Author) / Cooke, Nancy J (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2022
189315-Thumbnail Image.png
Description
The purpose of the present study is to explore a potential rehabilitation alternative/additive, when time, insurance, finances, or lack of knowledge are limitations for mild traumatic brain injury (mTBI) executive function (EF) rehabilitation. The experimental intervention involved two sets of participants an experimental group and a control group. Participants within

The purpose of the present study is to explore a potential rehabilitation alternative/additive, when time, insurance, finances, or lack of knowledge are limitations for mild traumatic brain injury (mTBI) executive function (EF) rehabilitation. The experimental intervention involved two sets of participants an experimental group and a control group. Participants within the experimental and control groups partook in initial (week 1) and final (week 6) EF and TBI assessments. The experimental group additionally participated in four weeks (weeks 2 - 5) of an experimental intervention in beta stage of a web-based application. The aim of the intervention was to train EF skills planning, organization, and cognitive flexibility through serious gamification. At the conclusion of the study, it was observed that participants within the experimental group achieved higher scores on the experimental executive function assessment when compared to the control group. The difference in scores can be attributed to the weekly participation in executive function training.
ContributorsEzenyilimba, Akuadasuo (Author) / Cooke, Nancy (Thesis advisor) / McDaniel, Troy (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2023
168586-Thumbnail Image.png
Description
A core component of leadership is being able to motivate and influence people to perform at the highest levels they are capable of. Being able to perform well in most industries requires people to put effort into their work, bypass surface level impulses, and engage deeper levels of cognitive processes

A core component of leadership is being able to motivate and influence people to perform at the highest levels they are capable of. Being able to perform well in most industries requires people to put effort into their work, bypass surface level impulses, and engage deeper levels of cognitive processes when making decisions. This study looked at two treatments, an expectation and a social incentive, and its effects on cognitive reflection test (CRT) scores and time taken to complete this test. Although it appeared that receiving a leaderboard and expectation treatment improved cognitive reflection test score, these results were not statistically significant. It appeared that a leaderboard and expectation treatment increased time put into taking the test after removing certain data, but these results were also not statistically significant. After some transformation of the data, there may be an effect that leaderboards have on deeper level cognitive engagement if time and effort put into the test is controlled for properly, but this will have to be observed further in future studies.
ContributorsHrabovsky, John (Author) / Gray, Rob (Thesis advisor) / Becker, Vaughn (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2022
187734-Thumbnail Image.png
Description
Urban search and rescue (USAR) teams may use Artificial Social Intelligence (ASI) agents to aid teams in adapting to dynamic environments, minimize risk, and increase mission assurance and task performance. This thesis underlines the relationship between vocal pitch, stress, and team performance from a recent experiment conducted in a simulated

Urban search and rescue (USAR) teams may use Artificial Social Intelligence (ASI) agents to aid teams in adapting to dynamic environments, minimize risk, and increase mission assurance and task performance. This thesis underlines the relationship between vocal pitch, stress, and team performance from a recent experiment conducted in a simulated USAR synthetic task environment (STE). The simulated USAR-STE is a platform to use ASI as an advisor to intervene in the human team members’ cognitive processes, which aims to reduce risk to task execution and to maintain team performance. Three heterogeneous and interdependent roles interact via voice communication to search and rescue the victims: (1) medic -rescues victims and identifies the severity of injuries; (2) transporter -moves victims to their designated zone based on injury severity; (3) engineer -removes hazardous material such as rubble from a room or hallway that is blocking passage. Different speeds are associated with each role, such as medic, transporter, and engineer. Medic has a default speed; the transporter has times two over the default speed; the engineer has the slowest speed. In a total of 45 teams, three ASI conditions, manipulated based on ASI intervention communication length and frequency, were analyzed. Each team participated in two 15-min missions. The results indicate a U-shaped relationship between the transporter’s pitch and a change in team performance. A possible explanation for this significance is the task and role design. The transporter may have the most central role in voice communication because when the transporter is under varying levels of workload and stress, and thus voice pitch has a complex relationship with performance for that role.
ContributorsCLARK, JESKA (Author) / Cooke, Nancy J (Thesis advisor) / Gutzwiller, Robert (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2023
157345-Thumbnail Image.png
Description
The prospects of commercially available autonomous vehicles are surely tantalizing, however the implementation of these vehicles and their strain on the social dynamics between motorists and pedestrians remains unknown. Questions concerning how autonomous vehicles will communicate safety and intent to pedestrians remain largely unanswered. This study examines the efficacy of

The prospects of commercially available autonomous vehicles are surely tantalizing, however the implementation of these vehicles and their strain on the social dynamics between motorists and pedestrians remains unknown. Questions concerning how autonomous vehicles will communicate safety and intent to pedestrians remain largely unanswered. This study examines the efficacy of various proposed technologies for bridging the communication gap between self-driving cars and pedestrians. Displays utilizing words like “safe” and “danger” seem to be effective in communicating with pedestrians and other road users. Future research should attempt to study different external notification interfaces in real-life settings to more accurately gauge pedestrian responses.
ContributorsMuqolli, Endrit (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2019
157628-Thumbnail Image.png
Description
Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”) processes are reflected in the movements of sway. The

Maintaining upright balance and postural control is a task that most individuals perform everyday with ease and without much thought. Although it may be a relatively easy task to perform, research has shown that changes in cognitive (or “attentional”) processes are reflected in the movements of sway. The purpose of this dissertation is to understand the relationship between attention and posture when attention is directly or indirectly shifted away from posture. Using a dual-task paradigm, attention was shifted directly by instructing participants to prioritize the balance task (minimize sway in a unipedal stance) or prioritize the cognitive task (minimize errors in an auditory n-back task) and indirectly by changing the difficulty level of the cognitive task (0-back vs. 2-back task). Postural sway was assessed using sample entropy (SampEn), standard deviation, (SD) and sway path (SP) of trunk movements to measure the regularity, variability, and overall distance of sway travelled, respectively. Dual-task behavior was examined when participants were in a controlled (i.e., non-fatigued) state (Experiment 1), in a state of physical fatigue (Experiment 2), and in a state of mental fatigue (Experiment 3). Across all three experiments, indirectly shifting attention away from posture in the more difficult 2-back task induced less regularity (higher SampEn) and variability (smaller SD) in postural sway. Directly shifting attention away from posture, by prioritizing the cognitive task, induced less regularity (higher SampEn) and a longer path length (higher SP) in Experiment 1, however this effect was not significant for the fatigued participants in Experiments 2 and 3. Neither physical fatigue (Experiment 2) or mental fatigue (Experiment 3) negatively affected postural sway or cognitive performance. Overall, the findings from this dissertation contribute to the relationship between movement regularity and attention in posture, and that the postural behavior that emerges is sensitive to methods in which attention is manipulated (direct, indirect) and fatigue (physical, mental).
ContributorsGibbons, Cameron Todd (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric L (Committee member) / Gray, Rob (Committee member) / Brewer, Gene A. (Committee member) / Arizona State University (Publisher)
Created2019