Matching Items (96)
132869-Thumbnail Image.png
Description
While type 2 diabetes (T2D) rates have soared, the number of Americans classified as ‘prediabetic’ has also increased. Despite this, current preventative approaches are costly and often not without undue side-effects. Instead, behavioral lifestyle approaches hold promise in reducing conversion rates of T2D as the latest treatment option that could

While type 2 diabetes (T2D) rates have soared, the number of Americans classified as ‘prediabetic’ has also increased. Despite this, current preventative approaches are costly and often not without undue side-effects. Instead, behavioral lifestyle approaches hold promise in reducing conversion rates of T2D as the latest treatment option that could mitigate and transform disease management. However, present interventions do not possess the scope necessary for implementation in a realistic, scalable way that can target the large at-risk population.
The application (app) “BeWell24” mitigates this diabetes risk through targeting sleep, physical activity, sedentary behavior, and diet, and is being delivered through mHealth technology to attenuate the higher-risk of the prediabetic Veteran population. In order for full scale dissemination, this thesis examines a provider perspective of the ‘Post-intervention interview guide’, performed with a Phoenix Veterans Affairs Health Care System (PVAHCS) provider. It then suggests revisions to the interview guide based on the provider’s interview and existing literature. This thesis also emphasizes the rationale behind these proposed changes to be organized in line with the iPARIHS framework (integrated Promoting Action on Research Implementation in Health Services).
Overall, the provider responded positively to BeWell24 and the ‘Post-intervention interview guide’, with constructive suggestions for each question in the interview guide. The main theme of the provider’s answers and comments were to prioritize efficiency and preserve standard clinical flow. A revised interview guide is provided, which prospectively presents as a more brief and focused interview organized by the iPARIHS framework. This revised interview guide could aid in the clarity of provider responses, specifically for the prospective interviews of the ongoing larger BeWell24 study and future studies.
ContributorsWojtas, Abby Ann (Author) / Buman, Matthew (Thesis director) / Larouche, Miranda (Committee member) / Epstein, Dana (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133691-Thumbnail Image.png
Description
Mobile health or "mHealth" defines a broad spectrum of medical or public health practice supported by mobile devices. The patient's perception of mobile health applications is the key point in confronting whether or not patients will utilize the tools at their disposal As such, the primary aim of this study

Mobile health or "mHealth" defines a broad spectrum of medical or public health practice supported by mobile devices. The patient's perception of mobile health applications is the key point in confronting whether or not patients will utilize the tools at their disposal As such, the primary aim of this study was to examine participant feedback through quantitative and qualitative measures using the Therapy Evaluation Questionnaire and a patient interview, respectively, to further understand the patient rated acceptability of using BeWell24 and SleepWell24 for improving health outcomes. For BeWell24, it was hypothesized that patients who received the Multicomponent version would report higher acceptability scores than those randomized to the Health Education version. Furthermore, in regard to SleepWell24, it was hypothesized that the SleepWell24 patient would provide positive feedback and suggestions regarding their own experience with the SleepWell24 app. Data from this thesis was pulled from two ongoing randomized controlled trials currently being conducted at the Phoenix Veteran Affairs Health Care Service (PVACHS) and Mayo Clinic hospitals. Means, standard deviations, frequencies, and percentages were commuted to summarize demographics and TEQ scores. In addition, key concepts from a qualitative interview with a SleepWell24 participant were derived. The results showed a greater acceptability of the multicomponent versions of BeWell24 and SleepWell24 but a lower TEQ score of perceived usability. mHealth implementations pose a potential to become an important part of the health sector for establishing innovative approaches to delivering care, and while benefits have been highly praised, it is clear that the perceptions of mHealth must be positive if the technology is to transcend into a practical clinical setting.
ContributorsJimenez, Asael (Author) / Buman, Matthew (Thesis director) / Epstein, Dana (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133531-Thumbnail Image.png
Description
Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.
ContributorsBrooks, Meilia Catherine (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Ghirlanda, Giovanna (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134945-Thumbnail Image.png
Description
Sleep diaries and actigraphy are two common methods used to assess sleep subjectively and objectively, respectively. Compared to the gold standard of sleep assessment, polysomnography, sleep diaries and actigraphic methods are more cost-effective and simpler to use. This study aimed to compare the sleep parameters derived from actigraphy and slee

Sleep diaries and actigraphy are two common methods used to assess sleep subjectively and objectively, respectively. Compared to the gold standard of sleep assessment, polysomnography, sleep diaries and actigraphic methods are more cost-effective and simpler to use. This study aimed to compare the sleep parameters derived from actigraphy and sleep diaries (total sleep time, sleep onset latency, number of awakenings, wake after sleep onset, percentage of time awake, and sleep efficiency). Based on results from previous similar studies, it was hypothesized that the sleep diaries would overestimate the total sleep time parameter and underestimate wake parameters. Twenty healthy young adults without sleep problems volunteered to participate. The participants wore an Actiwatch 2 on their wrist and filled out a sleep diary every morning for the duration of six days. A high intraclass correlation coefficient value between subjective and objective sleep was found for the parameter total sleep time, even though total sleep time was found to be slightly overestimated by the sleep diaries. Sleep onset latency, wake after sleep onset, number of awakenings, percentage of time awake, and sleep efficiency were underestimated by the sleep diaries and did not have high correlation values. Based off of the ICC results, there does not seem to be a strong correlation between the Actiwatch 2 and the sleep diaries, but looking at the Bland Altman plots, there seems to be agreement between the methods.
ContributorsRameshkumar, Aarthi (Author) / Buman, Matthew (Thesis director) / Petrov, Megan (Committee member) / Diaz-Piedra, Carolina (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2016-12
134738-Thumbnail Image.png
Description
Recent research has confirmed and revealed many physical and mental benefits of yoga. The practice of yoga has spread throughout the western world, where it is widely used for the purpose of exercise and fitness. Due to its rise in popularity, there is a need for research regarding the energy

Recent research has confirmed and revealed many physical and mental benefits of yoga. The practice of yoga has spread throughout the western world, where it is widely used for the purpose of exercise and fitness. Due to its rise in popularity, there is a need for research regarding the energy expenditure required for different types of yoga. The majority of the literature cites yoga as being an effective exercise for light intensity activity, but there are not as many studies attempting to determine if there are postures and sequences that can meet the requirements for moderate physical activity. In addition, there is a need to validate mobile devices with which to measure energy expenditure (EE) that are compatible with the dynamic movements that occur during yoga. The purpose of this study was to measure energy expenditure of twenty-two yoga practitioners of varying experience during a 30-minute Vinyasa flow yoga practice and from this data collection determine: if an ashtanga-based vinyasa yoga class meets the criteria for moderate intensity physical activity, the reliability between the Actigraph and Oxycon Mobile and the validity of an Actigraph GT3X device worn on the hip in estimating energy expenditure for ashtanga-based vinyasa flow yoga. The Actigraph GT3X and the Oxycon mobile were used to measure energy expenditure. Mean values for energy expenditure recorded by the Oxycon and Actigraph were 3.19 ± 0.42 METs and 1.16 ± 0.23 METs respectively, exhibiting a significant difference in data collection. There was no correlation between the values recorded by the two devices, indicating that the Actigraph was not consistent with the Oxycon Mobile (previously validated for measurement of EE). Results of this study indicate that this Vinyasa flow yoga sequence does satisfy the criteria for moderate intensity physical activity as defined by ACSM with an average EE of 3.19 ± 0.42 METs, and that the Actigraph GT3X is not an accurate device for measurement of EE for yoga.
ContributorsHand, Lindsay Gabrielle (Author) / Huberty, Jennifer (Thesis director) / Buman, Matthew (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135431-Thumbnail Image.png
Description
The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the

The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the cobalt porphyrin’s in organic solutions gassed with carbon dioxide. The cobalt porphyrin yielded larger catalytic currents, but at the same potential as the electrode. This difference, along with the significant changes in the porphyrin’s electronic, optical and redox properties, showed that its capabilities for carbon dioxide reduction can be controlled by metal ions, allotting it unique opportunities for applications in solar fuels catalysis and photochemical reactions.
ContributorsSkibo, Edward Kim (Author) / Moore, Gary (Thesis director) / Woodbury, Neal (Committee member) / School of Molecular Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
171757-Thumbnail Image.png
Description
Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the

Meditation app usage is associated with decreases in stress, anxiety, and depression symptoms. Many meditation app subscribers, however, quickly abandon or reduce their app usage. This dissertation presents three manuscripts which 1) determined the behavioral, demographic, and socioeconomic factors associated with the abandonment of a meditation app, Calm, during the COVID-19 pandemic, 2) determined which participant characteristics predicted meditation app usage in the first eight weeks after subscribing, and 3) determined if changes in stress, anxiety, and depressive symptoms from baseline to Week 8 predicted meditation app usage from Weeks 8-16. In Manuscript 1, a survey was distributed to Calm subscribers in March 2020 that assessed meditation app behavior and meditation habit strength, and demographic information. Cox proportional hazards regression models were estimated to assess time to app abandonment. In Manuscript 2, new Calm subscribers completed a baseline survey on participants’ demographic and baseline mental health information and app usage data were collected over 8 weeks. In Manuscript 3, new Calm subscribers completed a baseline and Week 8 survey on demographic and mental health information. App usage data were collected over 16 weeks. Regression models were used to assess app usage for Manuscripts 2 and 3. Findings from Manuscript 1 suggest meditating after an existing routine decreased risk of app abandonment for pre-pandemic subscribers and for pandemic subscribers. Additionally, meditating “whenever I can” decreased risk of abandonment among pandemic subscribers. No behavioral factors were significant predictors of app abandonment among the long-term subscribers. Findings from Manuscript 2 suggest men had more days of meditation than women. Mental health diagnosis increased average daily meditation minutes. Intrinsic motivation for meditation increased the likelihood of completing any meditation session, more days with meditation sessions, and more average daily meditation minutes. Findings from Manuscript 3 suggest improvements in stress increased average daily meditation minutes. Improvements in depressive symptoms decreased daily meditation minutes. Evidence from this three-manuscript dissertation suggests meditation cue, time of day, motivation, symptom changes, and demographic and socioeconomic variables may be used to predict meditation app usage.
ContributorsSullivan, Mariah (Author) / Stecher, Chad (Thesis advisor) / Huberty, Jennifer (Committee member) / Buman, Matthew (Committee member) / Larkey, Linda (Committee member) / Chung, Yunro (Committee member) / Arizona State University (Publisher)
Created2022
171888-Thumbnail Image.png
Description
Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of

Computational models have long been used to describe and predict the outcome of complex immunological processes. The dissertation work described here centers on the construction of multiscale computational immunology models that derives biological insights at the population, systems, and atomistic levels. First, SARS-CoV-2 mortality is investigated through the lens of the predicted robustness of CD8+ T cell responses in 23 different populations. The robustness of CD8+ T cell responses in a given population was modeled by predicting the efficiency of endemic MHC-I protein variants to present peptides derived from SARS-CoV-2 proteins to circulating T cells. To accomplish this task, an algorithm, called EnsembleMHC, was developed to predict viral peptides with a high probability of being recognized by CD T cells. It was discovered that there was significant variation in the efficiency of different MHC-I protein variants to present SARS-CoV-2 derived peptides, and countries enriched with variants with high presentation efficiency had significantly lower mortality rates. Second, a biophysics-based MHC-I peptide prediction algorithm was developed. The MHC-I protein is the most polymorphic protein in the human genome with polymorphisms in the peptide binding causing striking changes in the amino acid compositions, or binding motifs, of peptide species capable of stable binding. A deep learning model, coined HLA-Inception, was trained to predict peptide binding using only biophysical properties, namely electrostatic potential. HLA-Inception was shown to be extremely accurate and efficient at predicting peptide binding motifs and was used to determine the peptide binding motifs of 5,821 MHC-I protein variants. Finally, the impact of stalk glycosylations on NL63 protein dynamics was investigated. Previous data has shown that coronavirus crown glycans play an important role in immune evasion and receptor binding, however, little is known about the role of the stalk glycans. Through the integration of computational biology, experimental data, and physics-based simulations, the stalk glycans were shown to heavily influence the bending angle of spike protein, with a particular emphasis on the glycan at position 1242. Further investigation revealed that removal of the N1242 glycan significantly reduced infectivity, highlighting a new potential therapeutic target. Overall, these investigations and associated innovations in integrative modeling.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis advisor) / Singharoy, Abhishek (Thesis advisor) / Woodbury, Neal (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2022
190774-Thumbnail Image.png
Description
This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA

This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA and, thus, slow the rapid increase in sedentary lifestyles. Transcranial direct current stimulation (tDCS) involves brain neuromodulation by facilitating or inhibiting spontaneous neural activity. tDCS applied to the dorsolateral prefrontal cortex (DLPFC) increases dopamine release in the striatum, an area of the brain involved in the reward–motivation pathways. I propose that a repeated intervention, consisting of tDCS applied to the DLPFC followed by a short walking exercise stimulus, enhances motivation for PA and daily PA levels in healthy adults. Results showed that using tDCS followed by short-duration walking exercise may enhance daily PA levels in low-physically active participants but may not have similar effects on those with higher levels of daily PA. Moreover, there was a significant effect on increasing intrinsic motivation for PA in males, but there were no sex-related differences in PA. These effects were not observed during a 2-week follow-up period of the study after the intervention was discontinued. Further research is needed to confirm and continue exploring the effects of tDCS on motivation for PA in larger cohorts of sedentary populations. This novel research will lead to a cascade of new evidence-based technological applications that increase PA by employing approaches rooted in biology.
ContributorsRuiz Tejada, Anaissa (Author) / Katsanos, Christos (Thesis advisor) / Neisewander, Janet (Committee member) / Sadleir, Rosalind (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2023