Matching Items (1,239)
Filtering by

Clear all filters

152931-Thumbnail Image.png
Description
Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This

Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses--utility-side, consumer-side, and combined analyses--to understand and evaluate the effect of increases in residential solar PV market

penetration. Three urban regions have been selected as study locations--Chicago, Phoenix, Seattle--with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location--solar insolation and load profile--was also found to affect the time of

year at which the largest net negative system load was realized.
ContributorsArnold, Michael (Author) / Johnson, Nathan G (Thesis advisor) / Rogers, Bradley (Committee member) / Ruddell, Benjamin (Committee member) / Arizona State University (Publisher)
Created2014
154735-Thumbnail Image.png
Description
The inherent intermittency in solar energy resources poses challenges to scheduling generation, transmission, and distribution systems. Energy storage devices are often used to mitigate variability in renewable asset generation and provide a mechanism to shift renewable power between periods of the day. In the absence of storage, however, time series

The inherent intermittency in solar energy resources poses challenges to scheduling generation, transmission, and distribution systems. Energy storage devices are often used to mitigate variability in renewable asset generation and provide a mechanism to shift renewable power between periods of the day. In the absence of storage, however, time series forecasting techniques can be used to estimate future solar resource availability to improve the accuracy of solar generator scheduling. The knowledge of future solar availability helps scheduling solar generation at high-penetration levels, and assists with the selection and scheduling of spinning reserves. This study employs statistical techniques to improve the accuracy of solar resource forecasts that are in turn used to estimate solar photovoltaic (PV) power generation. The first part of the study involves time series forecasting of the global horizontal irradiation (GHI) in Phoenix, Arizona using Seasonal Autoregressive Integrated Moving Average (SARIMA) models. A comparative study is completed for time series forecasting models developed with different time step resolutions, forecasting start time, forecasting time horizons, training data, and transformations for data measured at Phoenix, Arizona. Approximately 3,000 models were generated and evaluated across the entire study. One major finding is that forecasted values one day ahead are near repeats of the preceding day—due to the 24-hour seasonal differencing—indicating that use of statistical forecasting over multiple days creates a repeating pattern. Logarithmic transform data were found to perform poorly in nearly all cases relative to untransformed or square-root transform data when forecasting out to four days. Forecasts using a logarithmic transform followed a similar profile as the immediate day prior whereas forecasts using untransformed and square-root transform data had smoother daily solar profiles that better represented the average intraday profile. Error values were generally lower during mornings and evenings and higher during midday. Regarding one-day forecasting and shorter forecasting horizons, the logarithmic transformation performed better than untransformed data and square-root transformed data irrespective of forecast horizon for data resolutions of 1-hour, 30-minutes, and 15-minutes.
ContributorsSoundiah Regunathan Rajasekaran, Dhiwaakar Purusothaman (Author) / Johnson, Nathan G (Thesis advisor) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
155807-Thumbnail Image.png
Description
Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe

Concentrating Solar Power (CSP) plant technology can produce reliable and dispatchable electric power from an intermittent solar resource. Recent advances in thermochemical energy storage (TCES) can offer further improvements to increase off-sun operating hours, improve system efficiency, and the reduce cost of delivered electricity. This work describes a 111.7 MWe CSP plant with TCES using a mixed ionic-electronic conducting metal oxide, CAM28, as both the heat transfer and thermal energy storage media. Turbine inlet temperatures reach 1200 °C in the combined cycle power block. A techno-economic model of the CSP system is developed to evaluate design considerations to meet targets for low-cost and renewable power with 6-14 hours of dispatchable storage for off-sun power generation. Hourly solar insolation data is used for Barstow, California, USA. Baseline design parameters include a 6-hour storage capacity and a 1.8 solar multiple. Sensitivity analyses are performed to evaluate the effect of engineering parameters on total installed cost, generation capacity, and levelized cost of electricity (LCOE). Calculated results indicate a full-scale 111.7 MWe system at $274 million in installed cost can generate 507 GWh per year at a levelized cost of $0.071 per kWh. Expected improvements to design, performance, and costs illustrate options to reduce energy costs to less than $0.06 per kWh.
ContributorsLopes, Mariana (Author) / Johnson, Nathan G (Thesis advisor) / Stechel, Ellen B (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2017
Description

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using

Human Papillomavirus, or HPV, is a viral pathogen that most commonly spreads through sexual contact. HPV strains 6 and 11 normally cause genital warts, while HPV strains 16 and 18 commonly cause cervical cancer, which causes cancerous cells to spread in the cervix. Physicians can detect those HPV strains, using a Pap smear, which is a diagnostic test that collects cells from the female cervix.

Created2021-04-06
Description

Johann Gregor Mendel studied patterns of trait inheritance in plants during the nineteenth century. Mendel, an Augustinian monk, conducted experiments on pea plants at St. Thomas’ Abbey in what is now Brno, Czech Republic. Twentieth century scientists used Mendel’s recorded observations to create theories about genetics.

Created2022-01-13
175283-Thumbnail Image.jpg
Description

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes. (2) Beadle and Ephrussi transplanted the donor optic discs into the bodies of several types of larvae, including those that would develop with normal colored eyes (brick red), and those that would develop eyes with other shades of red, such as claret, carmine, peach, and ruby (grouped together and colored black in the image). (3a) When implanted into normal hosts that would develop brick red eyes, the transplanted optic disc developed into an eye that also was brick red. (3b) When implanted into abnormal hosts that would develop eyes of some other shade of red, the transplanted optic discs developed into eyes that were vermilion. Beadle and Ephrussi concluded that there was a factor, such as an enzyme or some other protein, produced outside of the optic disc that influenced the color of the eye that developed from the disc.

Created2016-10-11
175286-Thumbnail Image.jpg
Description

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things,

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread. In the early 1940s, Beadle and Tatum conducted an experiment to discover the abnormal genes in Neurospora mutants, which failed to produce specific nutrients needed to survive. (1) Beadle and Tatum used X-rays to cause mutations in the DNA of Neurospora, and then they grew the mutated Neurospora cells in glassware. (2) They grew several strains, represented in four groups of paired test tubes. For each group, Neurospora was grown in one of two types of growth media. One medium contained all the essential nutrients that the Neurospora needed to survive, which Beadle and Tatum called a complete medium. The second medium was a minimal medium and lacked nutrients that Neurospora needed to survive. If functioning normally and in the right conditions, however, Neurospora can produce these absent nutrients. (3) When Beadle and Tatum grew the mutated mold strains on both the complete and on the minimal media, all of the molds survived on the complete media, but not all of the molds survived on the minimal media (strain highlighted in yellow). (4) For the next step, the researchers added nutrients to the minimal media such that some glassware received an amino acid mixture (represented as colored squares) and other glassware received a vitamin mixture (represented as colored triangles) in an attempt to figure out which kind of nutrients the mutated molds needed. The researchers then took mold from the mutant mold strain that had survived on a complete medium and added that mold to the supplemented minimal media. They found that in some cases the mutated mold grew on media supplemented only with vitamins but not on media supplemented only with amino acids. (5) To discover which vitamins the mutant molds needed, Beadle and Tatum used several tubes with the minimal media, supplementing each one with a different vitamin, and then they attempted to grow the mutant mold in each tube. They found that different mutant strains of the mold grew only on media supplemented with different kinds of vitamins, for instance vitamin B6 for one strain, and vitamin B1 for another. In experiments not pictured, Beadle and Tatum found in step (4) that other strains of mutant mold grew on minimal media supplemented only with amino acids but not on minimal media supplemented only with vitamins. When they repeated step (5) on those strains and with specific kinds of amino acids in the different test tubes, they found that the some mutated mold strains grew on minimal media supplemented solely with one kind of amino acid, and others strains grew only on minimal media supplemented with other kinds of amino acids. For both the vitamins and amino acid cases, Beadle and Tatum concluded that the X-rays had mutated different genes in Neurospora, resulting in different mutant strains of Neurospora cells. In a cell of a given strain, the X-rays had changed the gene normally responsible for producing an enzyme that catalyzed a vitamin or an amino acid. As a result, the Neurospora cell could no longer produce that enzyme, and thus couldn't catalyze a specific nutrient.

Created2016-10-12
Description

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated.

The Southern Gastric Brooding Frog (Rheobotrahcus silus) was a frog species that lived in Australia. It was declared extinct in 2002. Once adult males fertilized the eggs of females, the females swallowed their eggs. The stomachs of the females then functioned somewhat like wombs, protecting the eggs while they gestated. Once the eggs developed into juveniles, female frogs performed oral birth and regurgitated their young.

Created2017-02-06
175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21