Matching Items (146)
Filtering by

Clear all filters

128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
128672-Thumbnail Image.png
Description

The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water

The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows), and improving efficiency of treatment facilities.

ContributorsDeo, Randhir P. (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2013-09-11
135589-Thumbnail Image.png
Description
The Performance Based Studies Research Group (PBSRG) has developed industry-tested leadership and management techniques that have been proven to increase organizational performance. The Leadership Society of Arizona (LSA) has worked closely with PBSRG to develop an educational framework that introduces these leadership concepts to college students. LSA is now endeavoring

The Performance Based Studies Research Group (PBSRG) has developed industry-tested leadership and management techniques that have been proven to increase organizational performance. The Leadership Society of Arizona (LSA) has worked closely with PBSRG to develop an educational framework that introduces these leadership concepts to college students. LSA is now endeavoring to make this curriculum more accessible for K-12 students and educators. As part of a thesis creative project, the author has developed a strategy to connect with and enable local high schools, teachers, and students to engage with the professional industry and higher education. This strategy will allow LSA to connect with up to 150 high school students over the summer of 2016. By making this education easily accessible, the author has accomplished a milestone in the larger effort encompassed by LSA. The course chosen to present to high school students is an abridged variation of the Barrett Honors College course "Deductive Logic: Leadership and Management Techniques". The class framework is designed to instantiate a self-sustaining program for future summer school courses. The summer school course will allow high school students to learn, understand, and apply college level concepts into their education, work, and personal lives. The development of the framework for the program encompasses networking/partnering efforts, marketing package creation, and the delivery of the summer school course over the months of June and July in 2016.
ContributorsDunn, Melissa Anne (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135520-Thumbnail Image.png
Description
With the help of some Information Measurement Theory (IMT), Kashiwagi Solutions Model (KSM), and deductive logic background, supply chain managers can start utilizing a new way to effectively and efficiently negotiate contracts. Developed by Dr. Dean Kashiwagi, the Best Value Approach has been 98% successful with over 1,800 projects for

With the help of some Information Measurement Theory (IMT), Kashiwagi Solutions Model (KSM), and deductive logic background, supply chain managers can start utilizing a new way to effectively and efficiently negotiate contracts. Developed by Dr. Dean Kashiwagi, the Best Value Approach has been 98% successful with over 1,800 projects for the past 20 years. The process gives vendors/suppliers the power to use their expertise. In return for not having to follow the rules set by the client/buyer, the vendor must show documentation and plans of risk management, value added processes, and metrics.
ContributorsPhan, Alice (Co-author) / Holtzman, Krista (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / School of International Letters and Cultures (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135540-Thumbnail Image.png
Description
Since 1994, the Performance Based Studies Research Group at Arizona State University has utilized an approach to industry called Best Value (BV). Since its origin, this approach has been used in 1860 tests creating $6.4 billion dollars of projects and services delivered, at a customer satisfaction rating of 95%. Best

Since 1994, the Performance Based Studies Research Group at Arizona State University has utilized an approach to industry called Best Value (BV). Since its origin, this approach has been used in 1860 tests creating $6.4 billion dollars of projects and services delivered, at a customer satisfaction rating of 95%. Best Value (BV) is rooted in simplicity, and seeks to help organizations hire experts, plan ahead, minimize risk, optimize resources, and optimize resources. This is accomplished largely through the use of a tool the PBSRG calls the Kashiwagi Solution Model (KSM). Kashiwagi Solution Models can be used across every industry from construction to Wall Street to help achieve sustainable success in what is perhaps the most efficient and effective manner available today. Using Best Value (BV) and the Kashiwagi Solution Model (KSM), the author identified groups on Wall Street and throughout the world who deal in a unique entity called "Over-The-Counter (OTC) Derivatives". More specifically, this paper focuses on the current status and ramifications of derivative contracts that two parties enter with the sole intention of speculating. KSMs are used in Information Measurement Theory, which seeks to take seemingly complex subjects and simplify them into terms that everyone can understand. This document uses Information Measurement Theory to explain what OTC derivatives are in the simplest possible way, so that little prior knowledge of finance is required to understand the material. Through research and observation, KSMs can be used to identify the characteristics of groups who deal in OTC derivatives, which contributed to the financial crisis in 2008 and have grown in size and complexity. This document uses dominant information in order to see the potential problems within the OTC derivatives market from 30,000 feet, and offer solutions to those problems. Keywords: simplicity, best value approach, identify characteristics, dominant information
ContributorsBills, Andrew Marius (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Rivera, Alfredo (Committee member) / Department of Finance (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
141208-Thumbnail Image.png
Description
Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as one effective method to reduce temperature and energy consumption in cities, its impacts on multi-dimensional environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a portfolio of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.
ContributorsYang, Jiachuan (Contributor) / Wang, Zhi-Hua (Correspondent) / Kaloush, Kamil (Contributor)
Created2015-06-11