Matching Items (180)
171533-Thumbnail Image.png
Description
Corrosion is known to have severe infrastructure integrity implications in a broad range of industries including water and wastewater treatment and reclamation. In the U.S. alone, the total losses due to corrosion in drinking water and wastewater systems can account for economic losses as high as $80 billion dollars a

Corrosion is known to have severe infrastructure integrity implications in a broad range of industries including water and wastewater treatment and reclamation. In the U.S. alone, the total losses due to corrosion in drinking water and wastewater systems can account for economic losses as high as $80 billion dollars a year. Microbially induced corrosion is a complex phenomenon which involve various phases; 1) formation of biofilms on submerged surfaces, 2) creation of micro-environmental niches associated with biofilm growth, 3) altered availability nutrients, 4) changes in the pH and oxygen concentrations. Biofilms can harbor opportunistic or pathogenic bacteria for a long time increasing the risk of pathogen exposure for the end users. The focus of this thesis research was to study the kinetics of microbially induced corrosion of various materials in water and reclaimed water systems. The specific objective was to assess the biofilms formation potential on stainless steel 304, stainless steel 316, galvanized steel, copper, cPVC, glass, carbon steel, and cast iron in water and reclaimed water systems. Experiments were conducted using bioreactor containers, each bioreactor housed four sampling boxes with eight partitions, dedicated to each material type coupon. One bioreactor was stationed at ASU, and one at Vistancia Aquifer Storage and Recovery (ASR) well; while three bioreactors were stationed at Butler facility, at pre-disinfection, post-UV and post-chlorination. From each location, one submerged sampling box was retrieved after 1, 3, 6 and 12 months. Time series of biofilm samples recovered from various types of coupons from different locations were analyzed using physical and culture-based techniques for quantification of biofilms and detection of heterotrophic plate count (HPC) bacteria, Legionella, Mycobacterium, and sulfate reducing bacteria (SRB). After one-year, galvanized steel had the highest concentration of HPC at 4.27 logs while copper had the lowest concentration of 3.08 logs of HPC. Bacterial growth data collected from the SRB tests was compiled to develop a numerical matrix using growth potential, biofilm formation potential and metal reduction potential of SRB isolates. This risk assessment matrix can be a useful tool for the water industry to evaluate the potential risk of MIC in their systems.
ContributorsNeal, Amber (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2022
171558-Thumbnail Image.png
Description
Megapolitan cities have emerged due to unprecedented urban migration. These changes strain urban resources, especially water distribution and treatment systems. The recent rise of Legionella cases linked to water distribution systems highlights this issue.Bacterial growth and biofilm formation are influenced by factors, such as type and concentration of residual disinfectant,

Megapolitan cities have emerged due to unprecedented urban migration. These changes strain urban resources, especially water distribution and treatment systems. The recent rise of Legionella cases linked to water distribution systems highlights this issue.Bacterial growth and biofilm formation are influenced by factors, such as type and concentration of residual disinfectant, pipe material, water temperature. Experiments were conducted in identical model water distribution systems (WDSs) constructed of three different pipe materials: galvanized steel, copper, and cross-linked polyethylene (PEX) operated under a continuous flow rate of 15 L/min. Each model WDS includes 11 steel coupons screwed to the water distribution pipes. City of Tempe (Arizona) municipal water was used in the experimentation, with no nutrients added. Following biofilm growth, coupons were removed and processed by scrubbing biofilm into phosphate-buffered saline (PBS). Reasoner's 2A (R2A), Trypticase Soy Agar (TSA), Brilliant, and buffered charcoal yeast extract (BCYE) agar media were used to examine biofilm samples for heterotrophic plate counts (HPC), metabolically active bacteria, E coli, and Legionella. Simultaneously, water samples from the reservoirs of model WDSs were also collected and examined for the same bacteria.Next, an electrochlorination cell maintained free chlorine residuals in unheated PEX and copper model WDSs. These two systems maintained free chlorine residuals for one week and evaluated biofilm and bacterial kinetics. Higher water temperature increased biofilm development. Bacterial counts in biofilms were higher on new (fresh) coupons compared to the old coupons. Heterotrophic and metabolically active bacteria behaved similarly. Only control and heating systems in copper water reservoirs have Legionella spp. Biofilms formed less on copper systems than steel and PEX systems. Initially, PEX had more HPC than copper. After electrochlorination, HPC concentration in the PEX system rapidly declined to non-detect, whereas in the copper system dropped to 0.54 log CFU/mL. Thus, higher temperature increases biofilm growth on all pipe materials and reservoirs bacterial concentration. Electrochlorination is a potential biofilm and microbial disinfection method. This thesis topic investigated how these parameters affect the model distribution system bacterial populations and biofilm growth.
ContributorsKolahi Kouchaki, Bita (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2022
190844-Thumbnail Image.png
Description
Bacterial biofilms exist on surfaces within pressurized water systems, posing threats to water quality and causing fouling or microbial induced corrosion. Germicidal UV irradiation has shown promise in deactivating planktonic pathogens in water but challenges in delivering light to surfaces where biofilms exist have limited advancement in understanding biofilm response

Bacterial biofilms exist on surfaces within pressurized water systems, posing threats to water quality and causing fouling or microbial induced corrosion. Germicidal UV irradiation has shown promise in deactivating planktonic pathogens in water but challenges in delivering light to surfaces where biofilms exist have limited advancement in understanding biofilm response to UV-C light. This dissertation aims to overcome the limitation of delivering UV-C light through use of side-emitting optical fibers (SEOFs), advance capabilities to produce SEOFs and understand if a minimum UV-C irradiance can prevent biofilm formation. Two scalable manufacturing approaches were developed for producing kilometer lengths of thin (≤500-µm) and physically flexible SEOFs. One strategy involved dip-coating amine-functionalized SiO2 nanoparticles (NPs) on bare optical fiber, followed by a coating of UV-C transparent polymer (CyTop). I showed that NPs closer to the surface achieved with higher ionic strength solutions increased side-scattering of UV-C light. This phenomenon was primarily attributed to the interaction between NPs and evanescent wave energy. The second strategy omitted NPs but utilized a post-treatment to the UV-C transparent polymer that increased surface roughness on the outer fiber surface. This modification maintained the physical flexibility of the fiber while promoting side-emission of UV-C light. The side emission was due to the enhancement of refracted light energy. Both methods were successfully scaled up for potential commercial production. Experimental platforms were created to study biofilm responses to UV light on metal or flexible plastic pipe (1/4” ID) surfaces. Delivering UV-C light via SEOFs with irradiances >8 µW/cm2 inhibited biofilm accumulation. Neither UV-A nor UV-B light inhibited biofilm growth. At very low UV-C irradiance (<3 µW/cm2), biofilms were not inhibited. Functional genomic analysis revealed that biofilms irradiated by insufficient UV-C irradiance upregulated various essential genes related to DNA repair, energy metabolism, quorum sensing, mobility, and EPS synthesis. When net UV-C biofilm inactivation rates exceeded the biofilm growth rate, biofilms were inhibited. Insights gained from this dissertation work shed light on the prospective applications of UV-C technology in addressing biofilm challenges within water infrastructure across multiple sectors, from potable water to healthcare applications.
ContributorsZhao, Zhe (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Abbaszadegan, Morteza (Committee member) / Álvarez, Pedro (Committee member) / Arizona State University (Publisher)
Created2023
190824-Thumbnail Image.png
Description
Water quality assessment is essential for maintaining healthy ecosystems and protecting human health. Data interrogation and exploratory data analysis techniques are used to analyze the spatial and temporal variability of water quality parameters, identifying correlations, and to better understand the factors that impacts microbial and chemical quality of water. The

Water quality assessment is essential for maintaining healthy ecosystems and protecting human health. Data interrogation and exploratory data analysis techniques are used to analyze the spatial and temporal variability of water quality parameters, identifying correlations, and to better understand the factors that impacts microbial and chemical quality of water. The seasonal dynamics of microbiome in surface waters were investigated to identify the factors driving these dynamics. Initial investigation analyzed two decades of regional water quality data from 20 various locations in Central Arizona, USA. Leveraging advanced data science techniques, the study uncovered correlations between crucial parameters, including dissolved organic carbon (DOC), ultraviolet absorbance (UVA), and specific ultraviolet absorbance (SUVA). These findings provide foundational insights into the dynamic of overall water quality. A comprehensive 12-month surface water sample collection and study was conducted to investigate potential bias in bacterial detection using EPA approved Membrane Filtration (MF) technique. The results underscore that while MF excels in recovering bacteria of public health significance, it exhibits biases, particularly against small and spore-forming bacteria and Archaea, such as Bacilli, Mollicutes, Methylacidiphilae, and Parvarchaea. This emphasizes the importance of complementing standard microbiology approaches to mitigate technological biases and enhance the accuracy of microbial water quality testing, especially for emerging pathogens. Furthermore, a complementary study of microbial dynamics within a model drinking water distribution systems (DWDSs) using treated water from the same source water as the above study. The influence of pipe material and water temperature on the microbiome and trace element composition was investigated. The research unveiled a preferential link between pipe material and trace elements, with water temperature significantly impacting the microbiome to a higher degree than the chemical composition of water. Notably, Legionellaceae and Mycobacteriaceae were found to be prevalent in warmer waters, highlighting the substantial influence of water temperature on the microbiome, surpassing that of pipe material. These studies provide comprehensive insights into the spatial and temporal variability of water quality parameters. Analyzing microbial data in depth is crucial in detecting bacterial species within a monitoring program for adjusting operational conditions to reduce the presence of microbial pathogens and enhance the quality of drinking water.
ContributorsAloraini, Saleh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Perreault, Francois (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2023
189363-Thumbnail Image.png
Description
This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution

This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution system as opposed to when it enters buildings after crossing the property line. If drinking water is not properly managed in buildings, it can be a source or amplifier of microbial and chemical contaminants. Unlike regulations for chemical contaminants that are risk-based, for pathogens, regulations are either based on recommended treatment technologies or designated as zero, which is not achievable in practice. Practice-based judgments are typically made at the building level to maintain water quality. This research focuses on two drinking water opportunistic pathogens of public health concern, Legionella pneumophila and Mycobacterium avium complex (MAC). Multiple aspects of drinking water quality in two green buildings were monitored in tandem with water management interventions. Additionally, a quantitative microbial risk assessment framework was used to predict risk-based critical concentrations of MAC for drinking water-related exposures in the indoor environment corresponding to a 1 in 10,000 annual infection target risk benchmark. The overall goal of this work was to inform the development of water management plans and guidelines for buildings that will improve water quality in the built environment and promote better public health. It was determined that a whole building water softening system with ion exchange softening resin and expansion tanks were unexplored reservoirs for the colonization of L. pneumophila. Furthermore, it was observed that typical water management interventions such as flushing and thermal disinfection did not always mitigate water quality issues. Thus, there was a need to implement several atypical interventions such as equipment replacement to improve the building water quality. This work has contributed comprehensive field studies and models that have highlighted the need for additional niches, facility management challenges, and risk tradeoffs for focus in water safety plans. The work also informs additional risk-based water quality policy approaches for reducing drinking water risks.
ContributorsJoshi, Sayalee (Author) / Hamilton, Kerry A (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Conroy-Ben, Otakuye (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2023
168485-Thumbnail Image.png
Description
In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs)

In the recent years, there have been massive technological advancements which have led to increased radical industrialization resulting in a significant impact on the environment. Effluents and by-products of the production processes from industries such as pharmaceutical and personal care products (PPCPs) have increased the concerns of “emerging contaminants” (ECs) in surface waters and drinking water systems. This study focuses on the treatment of emerging chemical contaminants including nitrosodimethylamine (NDMA) and 1,4-dioxane. In addition, the inactivation of microbial contaminants of concern in water including E. coli, Legionella, Mycobacterium and fungal spores were studied using the same treatment technologies. The ECs chosen are not susceptible to conventional treatment process and there still remains a need for alternate processes for their removing/remediating to ensure safe drinking water. The treatment technologies utilized were Advanced Oxidation Processes (AOP) involving UV 220 /254 nm employing an excimer lamp and a low-pressure mercury lamp with ReFLeXTM technology and peracetic acid (PAA). The main objective of this study was to develop a new alternate technology for the enhanced remediation of chemical and microorganisms of concerns in water. The specific research objectives included: 1) To study the efficacy of the UV system to treat the selected contaminants. 2) To study the effect of PAA on the remediation of the contaminants. 3) To explore a new AOP technology under dynamic flow conditions with varying UV and PAA doses. 4) To determine optimized UV and PAA dosages to obtain enhanced remediation of the selected contaminant under dynamic flow conditions to better mimic the real-world applications.
ContributorsNatekar, Sunny Anand (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Diefenthal, George (Committee member) / Arizona State University (Publisher)
Created2021
168545-Thumbnail Image.png
Description新世纪以来中国电影的产业化改革与探索愈发呈现良好的态势,国产院线电影也在实践中努力赢得观众和票房市场。其中类型喜剧电影,最符合商业电影规律、最顺应影视市场需求、最能获得票房收益而备受影视创投机构、制作公司青睐。本论文研究对象聚焦类型喜剧电影,通过“欢声笑语里的财富”现象,探究类型喜剧电影内部本体构成要素与外部客观促成要素的关联;以通过分析自变量与因变量因素对中国电影票房之类型喜剧影响因素进行实证研究,为影视创投和影视制作总结并提供可靠建议。 本论文整体结构包括:第一部分为导论,包括研究背景、目的意义,相关文献综述与文献评述和论文创新性。第二部分聚焦类型喜剧本身,从电影学范畴的电影本体出发,探究“笑”的心理、社会与文化内涵,并分析将“笑”对经济领域的延伸。第三部分以影视投资、票房为依托,从现象和数据中探寻影响类型喜剧电影的因素,为展开中国电影票房之类型喜剧影响因素实证研究做好理论的铺垫。第四与第五部分则基于上述理论进行实证检验,选用2013-2020年电影样本,采用多元线性回归模型研究喜剧类型对票房的吸引力,以及不同种类型喜剧对电影票房的提振效果作用差异。研究发现喜剧电影对电影票房有显著的提振作用;以及研究电影的外部影响因素(续集效应)对电影票房的作用。发现续集电影有更好的票房表现,续集效应的票房提升作用在喜剧电影中表现的更加明显。 本论文研究成果最终将回归到“欢声笑语里的财富”本身;即“类型复合喜剧”对促进电影与金融产业的互动关联、实现更加可持续化发展,以及进而推动经济及文化业的发展。
ContributorsLiu, Yongqian (Author) / Shen, Wei (Thesis advisor) / Zhu, Ning (Thesis advisor) / Dong, Xiaodan (Committee member) / Arizona State University (Publisher)
Created2022
168436-Thumbnail Image.png
Description人口的老龄化不仅对养老事业提出更高的要求,也对养老服务产业人才的培养提出要求。但是青年学生选择涉老服务专业的意愿却非常低。因此,为了探究职业学院如何增强涉老服务专业吸引力这一问题,本文以学生为主体视角,利用相关理论,对于影响青年学生选择涉老服务专业的因素进行全面的分析,并结合深度访谈和调查法,提出并建构了相关的理论模型。首先,通过深度访谈和焦点小组讨论,结合对现有的文献的分析,本文提出了影响青年学生选择职业院校涉老服务专业的各种因素,主要包括:个人未来风险感知、家庭经济资本、社会信息评价、校企合作水平、专业课程建设水平、学生激励水平、师资队伍建设水平。之后,本文通过调查法,基于社会认同理论构建了本文的研究模型,并通过结构方程模型对所构建的模型进行检查。 本文的研究结果表明:个人未来风险感知对学生专业认同度产生负面影响;家庭经济资本对学生专业认同度产生负面影响;社会信息评价对学生专业认同度产生正面影响;校企合作水平对学生专业认同度产生正面影;专业课程建设水平对学生专业认同度产生正面影响;学生激励水平对学生专业认同度产生正面影响;师资队伍建设水平对学生专业认同度产生正面影响;学生专业认同度对学生专业选择意愿产生正面影响。 基于上述研究结论,本文选取了个人未来风险感知、家庭经济资本、社会信息评价、校企合作水平、专业课程建设水平、学生激励水平、师资队伍建设水平等因素对于广东岭南职业技术学院涉老服务专业的现有吸引力进行了分析和评估,并从这些视角进一步了对如何提升招生吸引力问题进行探讨,为提高涉老服务专业对于青年学生的吸引力,得出了相关管理建议。
ContributorsZhou, Lanqing (Author) / Shen, Wei (Thesis advisor) / Wu, Fei (Thesis advisor) / Pei, Ker-Wei (Committee member) / Arizona State University (Publisher)
Created2021
161976-Thumbnail Image.png
Description
Applications over a gesture-based human-computer interface (HCI) require a new user login method with gestures because it does not have traditional input devices. For example, a user may be asked to verify the identity to unlock a device in a mobile or wearable platform, or sign in to a virtual

Applications over a gesture-based human-computer interface (HCI) require a new user login method with gestures because it does not have traditional input devices. For example, a user may be asked to verify the identity to unlock a device in a mobile or wearable platform, or sign in to a virtual site over a Virtual Reality (VR) or Augmented Reality (AR) headset, where no physical keyboard or touchscreen is available. This dissertation presents a unified user login framework and an identity input method using 3D In-Air-Handwriting (IAHW), where a user can log in to a virtual site by writing a passcode in the air very fast like a signature. The presented research contains multiple tasks that span motion signal modeling, user authentication, user identification, template protection, and a thorough evaluation in both security and usability. The results of this research show around 0.1% to 3% Equal Error Rate (EER) in user authentication in different conditions as well as 93% accuracy in user identification, on a dataset with over 100 users and two types of gesture input devices. Besides, current research in this area is severely limited by the availability of the gesture input device, datasets, and software tools. This study provides an infrastructure for IAHW research with an open-source library and open datasets of more than 100K IAHW hand movement signals. Additionally, the proposed user identity input method can be extended to a general word input method for both English and Chinese using limited training data. Hence, this dissertation can help the research community in both cybersecurity and HCI to explore IAHW as a new direction, and potentially pave the way to practical adoption of such technologies in the future.
ContributorsLu, Duo (Author) / Huang, Dijiang (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Junshan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161990-Thumbnail Image.png
Description
The ongoing COVID pandemic has opened the doors for the development of effective surface disinfection technologies. UV technology is one of the most effective technique to be used in combination with different photocatalytic agents such as Titanium Dioxide (TiO2) for microbial inactivation. There are many bacteria and viruses which have

The ongoing COVID pandemic has opened the doors for the development of effective surface disinfection technologies. UV technology is one of the most effective technique to be used in combination with different photocatalytic agents such as Titanium Dioxide (TiO2) for microbial inactivation. There are many bacteria and viruses which have the potential to infect humans via surface-oral/inhalation pathway. Thus, it is important to evaluate the effectiveness of these techniques used to inactivate microorganisms to minimize environmental transmission. UV light directly acts on bacteria and viruses by damaging their nucleic acids and protein structures. TiO2 acts as a photocatalyst, generates hydroxyl radicals under UV, leading to enhanced inactivation efficacy. This study focuses on the impact of UVC light at 254 nm wavelength in combination with spray formulations with TiO2 for the inactivation of E. coli (exposure times of 1, 5 and 10 minutes) and bacteriophages P22 (exposure times of 5 and 10 minutes) and MS2 (exposure times of 1 and 5 minutes). This study includes tests that explored the long-lasting impact of spray formulations on non-porous surface. Minimal inactivation of ~ 0.15 log inactivation of E. coli was resulted using TiO¬2 alone but when UV was added to the procedure on average 3 log inactivation was achieved. It was noted that MS2 was found to be more susceptible to UV as compared to P22 due to its higher inactivation rate. The spray formulation homogeneity is a critical factor in consistent microbial inactivation. In addition, the UV intensity of the handheld device is an important factor for total disinfection. However, the combined spray formulation and UV technology is an effective method of surface disinfection.
ContributorsBaxi, Dhatri Kamleshbhai (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2021