Matching Items (96)
132881-Thumbnail Image.png
Description
Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general,

Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general, the purposes of tandem runs are fairly clear. There are tandem runs towards food in order to recruit gatherers, and there are tandem runs towards potential new nest sites to allow the colony to assess site quality. However, a group of tandem runs known as “reverse tandem runs” are a subject of mystery at this time. Reverse tandem runs are a type of tandem run found mainly during specific spans of Temnothorax colony migration. They typically arise during the period of migration when brood are being transported into a new nest site. The carriers of the brood, when returning to the old nest site to gather more brood, occasionally start tandem runs running backwards towards the old nest. In this study, the effect of navigational and physical obstacles encountered during migrations on the number of reverse tandem runs was tested. The hypothesis being that such a disturbance would cause an increase in reverse tandem runs as a method of overcoming the obstacle. This study was completed over the course of two experiments. This first experiment showed no indication of the ants having any trouble with the applied disturbance, and a second experiment with a larger challenge for the migrating ants was performed. The results of this second experiment showed that a migration obstacle will lead to an increase in migration time as well as an increase in the number of failed reverse tandem runs (reverse tandem runs that started but never reached the old nest). However, it was shown that the number of complete reverse tandem runs (reverse tandem runs that reached the old nest) remained the same whether the obstacle was introduced or not.
ContributorsKang, Byounghoon (Author) / Pratt, Stephen (Thesis director) / Juergen, Liebig (Committee member) / Valentini, Gabriele (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133514-Thumbnail Image.png
Description
Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent

Among the most ornate animal traits in nature are the angle-dependent (i.e. iridescent) structural colors of many birds, beetles, and butterflies. Though we now have a solid understanding of the mechanisms, function, and evolution of these features in several groups, less attention has been paid to the potential for angle-dependent reflectance in otherwise matte-appearing (i.e. not thought to be structurally colored) tissues. Here for the first time we describe non-iridescent angle-dependent coloration from the tail and wing feathers of several parrot species (Psittaciformes). We employed a novel approach \u2014 by calculating chromatic and achromatic contrasts (in just noticeable differences, JNDs) of straight and angled measurements of the same feather patch \u2014 to test for perceptually relevant angle-dependent changes in coloration on dorsal and ventral feather surfaces. We found, among the 15 parrot species studied, significant angle dependence for nearly all parameters (except chromatic JNDs on the ventral side of wing feathers). We then measured microstructural features on each side of feathers, including size and color of barbs and barbules, to attempt to predict interspecific variation in degree of angle-dependent reflectance. We found that hue, saturation, and brightness of feather barbs, barbule saturation, and barb:barbule coverage ratio were the strongest predictors of angle-dependent coloration. Interestingly, there was significant phylogenetic signal in only one of the seven angle-dependence models tested. These findings deepen our views on the importance of microscopic feather features in the production of directional animal coloration, especially in tissues that appear to be statically colored.
ContributorsReed, Steven Andrew (Co-author) / McGraw, Kevin (Thesis director) / Pratt, Stephen (Committee member) / Simpson, Richard (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134471-Thumbnail Image.png
Description
Pogonomyrmex Californicus, a species of harvester ants, have polyandrous queens, meaning that each queen mates with multiple males before starting a colony. Genetic diversity derived from polyandry can provide fitness benefits to a social insect colony in several ways including an increase in behavioral flexibility of the work force. In

Pogonomyrmex Californicus, a species of harvester ants, have polyandrous queens, meaning that each queen mates with multiple males before starting a colony. Genetic diversity derived from polyandry can provide fitness benefits to a social insect colony in several ways including an increase in behavioral flexibility of the work force. In some cases, P.californicus colonies can even exhibit polygyny, meaning that multiple queens cooperate to produce workers in a colony. In previous studies, the colony size, worker age, and genotypes of Pogonomyrmex californicus colonies were all found to influence task division to varying degrees, with matrilines appearing to only have influence within their respective colonies. These studies on matrilineal or induced variation and division of labor do not consider the effects of naturally occurring patrilineal variation, and it is unclear how exactly these two traits interact to influence colony function. In order to explore the influence of patriline on task division we raised single-queen P. californicus colonies in the lab and tested the effect of patriline on task performance in the workforce. Behavioral observations, and then genotypic data was collected and analyzed for one focal colony in the lab. The microsatellite data revealed a total of five identified patrilines among the observed workers and a Pearson chi-square test of independence showed a significant relationship between patriline and task performance. This suggests that polyandry alone can provide at least some of the benefits of genetic diversity to colony function. Further testing is needed to determine if the addition of cooperative queens may further increase genetic diversity in a colony and could supplement benefits to workforce performance. The benefits of genetic diversity may not be additive, though, in which case extra matrilines would not provide further benefit for the colony and would not then be a main driver of queen cooperation in this and other systems where polyandry and polygyny co-occur.
ContributorsWillis, Alison Rose (Author) / Fewell, Jennifer (Thesis director) / Pratt, Stephen (Committee member) / Haney, Brian (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134925-Thumbnail Image.png
Description
Current conservation practices are substantially biased towards large, charismatic animals and are influenced by public perceptions of different animals. Therefore, it is important to understand how these perceptions are formed and what factors influence them in order to promote equitable conservation for all species. This study examines the effect of

Current conservation practices are substantially biased towards large, charismatic animals and are influenced by public perceptions of different animals. Therefore, it is important to understand how these perceptions are formed and what factors influence them in order to promote equitable conservation for all species. This study examines the effect of attending a park education program on public values, knowledge of, and attitudes towards a noncharismatic species. Data was collected from May through October 2016 at the Usery Mountain Regional Park "All About Scorpions" program. A four page, onsite, self-administered pre- and post-program survey was given to program attendees. An identical survey was given to hiking park visitors who had never attended the program as the control sample. Survey statements addressed participant's demographics, value of bugs, knowledge about scorpions, and attitudes toward scorpions. Data analysis was completed using paired t-tests to analyze any statistically significant changes in values, knowledge, and attitudes between pre- and post-participants. Independent sample t-tests were used to analyze the same between the control and pre-participants. The results showed no difference in the value of bugs for any of the survey participants. However, the program attendees had more positive attitudes and greater knowledge of scorpions than general park visitors, and attending the program further increased positive attitudes and knowledge. Contributions of the study are twofold: First, the results provide Usery with information regarding the influence of their public programs, along with how these programs can be improved to make a greater impact. Second, findings serve to extend the literature on what alters public perceptions and how educational programs can be used to change the current conservation mindset.
ContributorsKallman, Nicole Marie (Author) / Minteer, Ben (Thesis director) / Budruk, Megha (Committee member) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135002-Thumbnail Image.png
Description
Social insect colonies adeptly make consensus decisions that emerge from distributed interactions among colony members. How consensus is accomplished when a split decision requires resolution is poorly understood. I studied colony reunification during emigrations of the crevice-dwelling ant Temnothorax rugatulus. Colonies can choose the most preferred of several alternative nest

Social insect colonies adeptly make consensus decisions that emerge from distributed interactions among colony members. How consensus is accomplished when a split decision requires resolution is poorly understood. I studied colony reunification during emigrations of the crevice-dwelling ant Temnothorax rugatulus. Colonies can choose the most preferred of several alternative nest cavities, but the colony sometimes initially splits between sites and achieves consensus later via secondary emigrations. I explored the decision rules and the individual-level dynamics that govern reunification using artificially split colonies. When monogynous colonies were evenly divided between identical sites, the location of the queen played a decisive role, with 14 of the 16 colonies reuniting at the site that held the queen. This suggests a group-level strategy for minimizing risk to the queen by avoiding unnecessary moves. When the queen was placed in the less preferred of two sites, all 14 colonies that reunited did so at preferred nest, despite having to move the queen. These results show that colonies balance multiple factors when reaching consensus, and that preferences for physical features of environment can outweigh the queen's influence. I also found that tandem recruitment during reunification is overwhelmingly directed from the preferred nest to the other nest. Furthermore, the followers of these tandem runs had a very low probability (5.7%) of also subsequently conducting transports.
ContributorsDoering, Grant Navid (Author) / Pratt, Stephen (Thesis director) / Pavlic, Theodore P. (Committee member) / Sasaki, Takao (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
157521-Thumbnail Image.png
Description
Emerging infectious diseases (EIDs) in vulnerable populations are a proposed cause of reduced global biodiversity due to local and regional extinctions. Chytridiomycosis, a fungal disease caused by Batrachochytrium dendrobatidis (Bd), is affecting amphibian populations worldwide.

Chapter 1 of this thesis reports using lab-raised larval tiger salamanders (Ambystoma tigrinum nebulosum), collected

Emerging infectious diseases (EIDs) in vulnerable populations are a proposed cause of reduced global biodiversity due to local and regional extinctions. Chytridiomycosis, a fungal disease caused by Batrachochytrium dendrobatidis (Bd), is affecting amphibian populations worldwide.

Chapter 1 of this thesis reports using lab-raised larval tiger salamanders (Ambystoma tigrinum nebulosum), collected as eggs, to test if Bd infects them. Bd infects metamorphosed tiger salamanders; however, it is currently unknown if larvae can be infected by Bd. Adult frogs tend to host Bd on ventral surfaces and hind legs while tadpoles host Bd in keratinized mouthparts. No research has considered differences in infection between life stages of salamanders. It was hypothesized that Bd can colonize larvae in the same manner as metamorphosed animals. Larval salamanders were inoculated to test if Bd concentrations differ among body regions in larvae compared to metamorphosed salamanders. Larvae can carry Bd with the concentration of Bd varying between body region.

Chapter 2 report using native tiger salamanders (Ambystoma tigrinum nebulosum), from northern Arizona and Bd as a study system to test if Bd is native or introduced to Arizona. It was hypothesized that Bd is not endemic to Arizona, but is introduced. There are multiple hypotheses regarding potential routes Bd may have traveled through Arizona and into Mexico. These hypotheses were tested using the Kaibab Plateau in Coconino County, Arizona, as a study site. The plateau is isolated from surrounding areas by the Grand Canyon to the south and the Vermillion Cliffs to the north serving as major biogeographical barriers. It is hypothesized that tiger salamanders are not dispersing into or out of the Kaibab Plateau due to geological restrictions. Bd, therefore, should not be present on salamanders on the Kaibab Plateau due to geological restriction. Tiger salamanders in stock tanks located on the Kaibab as well as preserved museum specimens housed in the Arizona State University Natural History Collection were sampled. The results indicate that Bd occurs at low levels on Kaibab Plateau tiger salamanders.
ContributorsOtsuru, Shinji Author (Author) / Collins, James P. (Thesis advisor) / Davidson, Elizabeth (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
190800-Thumbnail Image.png
Description
Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive

Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive relationship between body temperature and water loss that dictates increasing body temperature typically elicits an increase in water loss. Animals that inhabit areas where water is at least seasonally limited (e.g., deserts, wet-dry forests) may face a tradeoff between prioritizing behavioral thermophily to optimize physiological processes versus prioritizing water balance and potentially sacrificing some aspect of total performance capability.It is thus far unknown how reduced water availability and subsequent dehydration may influence thermophily in ectotherms. I hypothesized that behaviorally thermoregulating ectotherms exhibit thermophily during critical physiological events, and the extent to which thermophily is expressed is influenced by the animal’s hydric state. Using Children’s pythons (Antaresia childreni), I investigated the effects of dehydration on behavioral thermophily during digestion and reproduction. I found that dehydration caused a suppression in digestion-associated thermophily, where dehydrated snakes returned to pre-feeding body temperature sooner than they did when they were hydrated. In contrast, water deprivation at different reproductive stages had no effect on thermophily despite leading to a significant increase in the female’s plasma osmolality. ii Additionally, the timing of water deprivation during reproduction had differing effects on plasma osmolality and circulating triglyceride, total protein, and corticosterone concentrations. My research provides evidence of the sensitive and complex dynamic between body temperature, water balance, and physiological processes. At a time when many dry ecosystems are becoming hotter and drier, my investigation of dehydration and its influence on thermal dynamics and physiological metrics provides insight into cryptic effects on the vital processes of digestion and reproduction.
ContributorsAzzolini, Jill L. (Author) / Denardo, Dale F. (Thesis advisor) / John-Alder, Henry (Committee member) / Angilletta, Michael (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
189397-Thumbnail Image.png
Description
Pollinator populations globally have declined at concerning rates in recent years, which is problematic given that roughly a third of all food production depends on them. Managed honey bee colony losses in particular have alarmed beekeepers and scientists, especially in the United States. Widespread agrochemical use has been implicated as

Pollinator populations globally have declined at concerning rates in recent years, which is problematic given that roughly a third of all food production depends on them. Managed honey bee colony losses in particular have alarmed beekeepers and scientists, especially in the United States. Widespread agrochemical use has been implicated as one of the major causes of these colony losses. While the lethal effects of agrochemicals often receive the most attention, sublethal effects can occur at lower doses and can substantially weaken colonies over time. Impaired associative learning ability is a sublethal effect of a number of agrochemicals, and is particularly concerning, as it may hinder the abilities of bees to forage for food or find their way back to the colony. Here, I focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin), which is sprayed on honey bee-pollinated crops during bloom and is known to poison bee mitochondria at ppm levels. First, I show that Pristine® impairs performance on an associative learning assay in the laboratory. Next, I show that Pristine® alters carbohydrate absorption in honey bees, providing a possible mechanism underlying this impaired learning performance. Finally, I demonstrate that Pristine® interacts with high temperatures to induce homing failure in exposed bees. My results raise concerns that this common fungicide may not be safe for pollinators and will be relevant to policymakers as they make decisions surrounding the regulation of fungicide use in agriculture.
ContributorsDesJardins, Nicole (Author) / Harrison, Jon F (Thesis advisor) / Smith, Brian H (Thesis advisor) / DeGrandi-Hoffman, Gloria (Committee member) / DeNardo, Dale (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023