Matching Items (2)
Filtering by

Clear all filters

149493-Thumbnail Image.png
Description
The purpose of this thesis was to solve a complex problem in the manufacturing industry. The complex problem is the disposition and redeployment of specialized manufacturing equipment while accounting for import, export and supply chain security. The problem-solving approach is discussed in detail, focusing on lean and six sigma methodologies

The purpose of this thesis was to solve a complex problem in the manufacturing industry. The complex problem is the disposition and redeployment of specialized manufacturing equipment while accounting for import, export and supply chain security. The problem-solving approach is discussed in detail, focusing on lean and six sigma methodologies for a solution meeting both company internal and external requirements. This combination of lean and six sigma methodology has been validated by use in a pharmaceutical company. The process flow to dispose equipment properly is presented in detail. The process details can be used as best practices by any company dealing with specialized manufacturing equipment, enabling them to develop a robust process tailored to their organizational structure, hierarchy and resource availability.
ContributorsLedermann, Jean-Pierre (Author) / Danielson, Scott (Thesis advisor) / Biekert, Russell (Committee member) / Lewis, Sharon (Committee member) / Arizona State University (Publisher)
Created2010
158348-Thumbnail Image.png
Description
Honeycomb sandwich panels have been used in structural applications for several decades in various industries. While these panels are lightweight and rigid, their design has not evolved much due to constraints imposed by available manufacturing processes and remain primarily two-dimensional extrusions sandwiched between facings. With the growth in Additive Manufacturing,

Honeycomb sandwich panels have been used in structural applications for several decades in various industries. While these panels are lightweight and rigid, their design has not evolved much due to constraints imposed by available manufacturing processes and remain primarily two-dimensional extrusions sandwiched between facings. With the growth in Additive Manufacturing, more complex geometries can now be produced, and advanced design techniques can be implemented into end use parts to obtain further reductions in weight, as well as enable greater multi-functionality. The question therefore is: how best to revisit the design of these honeycomb panels to obtain these benefits?

In this work, a Bio-Inspired Design approach was taken to answer this question, primarily since the hexagonal lattice is so commonly found in wasp and bee nests, including the well-known bee’s honeycomb that inspired these panel designs to begin with. Whereas prior honeycomb panel design has primarily focused on the hexagonal shape of the unit cell, in this work we examine the relationship between the various parameters constituting the hexagonal cell itself, specifically the wall thickness and the corner radius, and also examine out-of-plane features that have not been previously translated into panel design. This work reports findings from a study of insect nests across 70 species using 2D and 3D measurements with optical microscopy and X-ray tomography, respectively. Data from these biological nests were used to identify design parameters of interest, which were then translated into design principles. These design principles were implemented in the design of honeycomb panels manufactured with the Selective Laser Sintering process and subjected to experimental testing to study their effects on the mechanical behavior of these panels.
ContributorsGoss, Derek Lee (Author) / Bhate, Dhruv (Thesis advisor) / Lewis, Sharon (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2020