Matching Items (3)
149493-Thumbnail Image.png
Description
The purpose of this thesis was to solve a complex problem in the manufacturing industry. The complex problem is the disposition and redeployment of specialized manufacturing equipment while accounting for import, export and supply chain security. The problem-solving approach is discussed in detail, focusing on lean and six sigma methodologies

The purpose of this thesis was to solve a complex problem in the manufacturing industry. The complex problem is the disposition and redeployment of specialized manufacturing equipment while accounting for import, export and supply chain security. The problem-solving approach is discussed in detail, focusing on lean and six sigma methodologies for a solution meeting both company internal and external requirements. This combination of lean and six sigma methodology has been validated by use in a pharmaceutical company. The process flow to dispose equipment properly is presented in detail. The process details can be used as best practices by any company dealing with specialized manufacturing equipment, enabling them to develop a robust process tailored to their organizational structure, hierarchy and resource availability.
ContributorsLedermann, Jean-Pierre (Author) / Danielson, Scott (Thesis advisor) / Biekert, Russell (Committee member) / Lewis, Sharon (Committee member) / Arizona State University (Publisher)
Created2010
158348-Thumbnail Image.png
Description
Honeycomb sandwich panels have been used in structural applications for several decades in various industries. While these panels are lightweight and rigid, their design has not evolved much due to constraints imposed by available manufacturing processes and remain primarily two-dimensional extrusions sandwiched between facings. With the growth in Additive Manufacturing,

Honeycomb sandwich panels have been used in structural applications for several decades in various industries. While these panels are lightweight and rigid, their design has not evolved much due to constraints imposed by available manufacturing processes and remain primarily two-dimensional extrusions sandwiched between facings. With the growth in Additive Manufacturing, more complex geometries can now be produced, and advanced design techniques can be implemented into end use parts to obtain further reductions in weight, as well as enable greater multi-functionality. The question therefore is: how best to revisit the design of these honeycomb panels to obtain these benefits?

In this work, a Bio-Inspired Design approach was taken to answer this question, primarily since the hexagonal lattice is so commonly found in wasp and bee nests, including the well-known bee’s honeycomb that inspired these panel designs to begin with. Whereas prior honeycomb panel design has primarily focused on the hexagonal shape of the unit cell, in this work we examine the relationship between the various parameters constituting the hexagonal cell itself, specifically the wall thickness and the corner radius, and also examine out-of-plane features that have not been previously translated into panel design. This work reports findings from a study of insect nests across 70 species using 2D and 3D measurements with optical microscopy and X-ray tomography, respectively. Data from these biological nests were used to identify design parameters of interest, which were then translated into design principles. These design principles were implemented in the design of honeycomb panels manufactured with the Selective Laser Sintering process and subjected to experimental testing to study their effects on the mechanical behavior of these panels.
ContributorsGoss, Derek Lee (Author) / Bhate, Dhruv (Thesis advisor) / Lewis, Sharon (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2020
166218-Thumbnail Image.png
Description
The People’s Republic of China over the course of 40 years has developed from one of the world’s poorest countries, to one of the world’s richest. The early years of the PRC was marked with significant poverty caused by government policies like the Great Leap Forward and the Cultural Revolution.

The People’s Republic of China over the course of 40 years has developed from one of the world’s poorest countries, to one of the world’s richest. The early years of the PRC was marked with significant poverty caused by government policies like the Great Leap Forward and the Cultural Revolution. However, in the late 1970s with Deng Xiaoping’s Open Door policy, China began its rapid transformation and economic growth. China’s economic development was greatly enhanced with the establishment of Special Economic Zones and industrial clusters. These zones coupled with China’s low-cost wages, made it ideal for international companies to invest and set up low-cost manufacturing production in China driven by global market competition and communication technologies. The results of China’s transformation made China into the world’s second largest economic power in terms of gross domestic product, and the world’s largest when adjusted to purchasing power parity. China also earned the moniker as the “World’s Factory” with China now accounting for the largest share of global manufacturing output. However, as China’s population urbanizes and wages become more expensive, several international companies have looked elsewhere for low-wage manufacturing threatening China’s manufacturing sector which employs over 128 million people. With the prospect of a potential slowdown in economic growth, the Chinese Communist Party initiated the Made-In-China 2025 program modernizing and advancing China’s manufacturing base with technologies in Industry 4.0. The MIC25 initiative is accelerated with China’s state-owned enterprises which often make their decisions based on government policy. The goal of MIC25 is for China to transition from a process innovating country into a product innovating one, becoming a leader in global technologies. The investment into human capital through education and especially foreign expertise is the primary driver of China’s prospects to lead the world in technological innovations related to Industry 4.0. MIC25 also has the prospect of legitimizing the CCP trough economic growth and development. Based on historical trends related to countries dominating the globe economically, industrially, and technologically seen in past industrial revolutions, China’s attempts to dominate the world in the fourth industrial revolution poses a great threat to the United States. China’s growing economic and technological advancements, and its dominant share of global manufacturing threaten the US’ position as the world’s foremost superpower. The US in turn should take accelerated steps to reshore American manufacturing to secure and maintain the US’ economic and technological lead and rebuild the American manufacturing base.
ContributorsNguyen, Richard (Author) / Gintz, Jerry (Thesis director) / Lewis, Sharon (Committee member) / Barrett, The Honors College (Contributor) / School of Manufacturing Systems and Networks (Contributor)
Created2022-05