Matching Items (19)
Filtering by

Clear all filters

157346-Thumbnail Image.png
Description
Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays

Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays a significant role in the regulation of heart rate and cerebral blood flow that are altered during VNS. Here, the effects of acute vagal nerve stimulation using varying stimulation parameters on both heart rate and cerebral blood flow were examined. Laser Speckle Contrast Analysis (LASCA) was used to analyze the cerebral blood flow of male Long–Evans rats. In the first experiment, results showed two distinct patterns of responses to 0.8mA of stimulation whereby animals either experienced a mild or severe decrease in heart rate. Further, animals that displayed mild heart rate decreases showed an increase in cerebral blood flow that persisted beyond VNS. Animals that displayed severe decreases showed a transient decrease in cerebral blood flow followed by an increase that was greater than that observed in mild animals but progressively decreased after VNS. The results suggest two distinct patterns of changes in both heart rate and blood flow that may be related to the intensity of VNS. To investigate the effects of lower levels of stimulation, an additional group of animals were stimulated at 0.4mA. The results showed moderate changes in heart rate but no significant changes in cerebral blood flow in these animals. The results demonstrate that VNS alters both heart rate and cerebral blood flow and that these effects are dependent on current intensity.
ContributorsHillebrand, Peter (M.S.) (Author) / Kleim, Jeffrey A (Thesis advisor) / Helms Tillery, Stephen I (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2019
156975-Thumbnail Image.png
Description
There is a critical need for creating an implantable microscale neural interface that can chronically monitor neural activity and oxygenation. These are key aspects for understating the development of impaired neural circuits and their functions. A technology with such capability would foster new insights in the studies of brain diseases

There is a critical need for creating an implantable microscale neural interface that can chronically monitor neural activity and oxygenation. These are key aspects for understating the development of impaired neural circuits and their functions. A technology with such capability would foster new insights in the studies of brain diseases and disorders. The propose is that MR-PISTOL (Proton imaging of Siloxane to Map Tissue Oxygenation Levels) imaging technique can be used for direct measurements of oxygen partial pressure at microelectrode-tissue interface. The strategy consists of coating microelectrodes with soft-silicone, a ultra-soft conductive PDMS (polydimethylsiloxane), as a carrier for liquid siloxanes MR-PISTOL contrast agents. This work presents a proof-of-concept of an injection molding technique for batch fabricate microelectrodes with such coating. Also, reports stability studies of soft-silicone loaded with liquid polydimethylsiloxane (PDMSO) in rodent brains. A batch of thirty coated carbon electrodes was achieved using candy molds. Coating uniformity was evaluated in twelve probes. They were randomly chosen and imaged with a custom image setup that allows 90o rotation of the probes. The total average coating thickness before and after rotation were 0.397 millimeters with standard deviation of 0.070 millimeters and 0.442 millimeters with standard deviation of 0.062 millimeters. Therefore, data confirms that this technique yields uniform coating. Stability of fabricated coated carbon electrodes unloaded (n= 3) and loaded with PDMSO (n= 3) was assessed. 3D X-ray imaging using Zeiss Xradia 520 machine was chosen for studying coatings mechanical stability in ex-vivo rat brain. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) with an energy dispersive x-ray microanalysis (EDS) detector were used to investigate their chemical stability in in vivo mouse brain. Initial EDS analysis from TEM and SEM of acute (6 hours) and chronic (2 weeks) brain slices suggest that PDMSO does not leach into brain. More experiments should be done to confirm and endorse this finding. The mechanical study shows that coating loaded with PDMSO delaminated during insertion. This was not observed with electrodes used in the chemical stability studies. Further experiments need to be done to identify possible causes of mechanical failures.
Contributorsde Mesquita Teixeira, Livia (Author) / Muthuswamy, Jitendran (Thesis advisor, Committee member) / Kodibagkar, Vikram (Thesis advisor, Committee member) / Sridharan, Arati (Committee member) / Arizona State University (Publisher)
Created2018
154664-Thumbnail Image.png
Description
Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy’s with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 μm displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.
ContributorsPalaniswamy, Sivakumar (Author) / Muthuswamy, Jitendran (Thesis advisor) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2016
155188-Thumbnail Image.png
Description
The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer

The use of a non-invasive form of energy to modulate neural structures has gained wide spread attention because of its ability to remotely control neural excitation. This study investigates the ability of focused high frequency ultrasound to modulate the excitability the peripheral nerve of an amphibian. A 5MHz ultrasound transducer is used for the study with the pulse characteristics of 57msec long train burst and duty cycle of 8% followed by an interrogative electrical stimulus varying from 30μsecs to 2msecs in pulse duration. The nerve excitability is determined by the compound action potential (CAP) amplitude evoked by a constant electrical stimulus. We observe that ultrasound's immediate effect on axons is to reduce the electrically evoked CAP amplitude and thereby suppressive in effect. However, a subsequent time delayed increased excitability was observed as reflected in the CAP amplitude of the nerve several tens of milliseconds later. This subsequent change from ultrasound induced nerve inhibition to increased excitability as a function of delay from ultrasound pulse application is unexpected and not predicted by typical nerve ion channel kinetic models. The recruitment curve of the sciatic nerve modified by ultrasound suggests the possibility of a fiber specific response where the ultrasound inhibits the faster fibers more than the slower ones. Also, changes in the shape of the CAP waveform when the nerve is under the inhibitive effect of ultrasound was observed. It is postulated that these effects can be a result of activation of stretch activation channels, mechanical sensitivity of the nerve to acoustic radiation pressure and modulation of ion channels by ultrasound.

The neuromodulatory capabilities of ultrasound in tandem with electrical stimulation has a significant potential for development of neural interfaces to peripheral nerve.
ContributorsChirania, Sanchit (Author) / Towe, Bruce (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2016
171979-Thumbnail Image.png
Description
Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so

Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so far as to use neuronal cultures as computing hardware, but utilizing an environment closer to a living brain means having to grapple with the same issues faced by clinicians and researchers trying to treat brain disorders. Most outstanding among these are the problems that arise with invasive interfaces. Optical techniques that use fluorescent dyes and proteins have emerged as a solution for noninvasive imaging with single-cell resolution in vitro and in vivo, but feeding in information in the form of neuromodulation still requires implanted electrodes. The implantation process of these electrodes damages nearby neurons and their connections, causes hemorrhaging, and leads to scarring and gliosis that diminish efficacy. Here, a new approach for noninvasive neuromodulation with high spatial precision is described. It makes use of a combination of ultrasound, high frequency acoustic energy that can be focused to submillimeter regions at significant depths, and electric fields, an effective tool for neuromodulation that lacks spatial precision when used in a noninvasive manner. The hypothesis is that, when combined in a specific manner, these will lead to nonlinear effects at neuronal membranes that cause cells only in the region of overlap to be stimulated. Computational modeling confirmed this combination to be uniquely stimulating, contingent on certain physical effects of ultrasound on cell membranes. Subsequent in vitro experiments led to inconclusive results, however, leaving the door open for future experimentation with modified configurations and approaches. The specific combination explored here is also not the only untested technique that may achieve a similar goal.
ContributorsNester, Elliot (Author) / Wang, Yalin (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2022
191022-Thumbnail Image.png
Description
The field of non-invasive neurostimulation techniques offer promising avenues for the treatment of various neurological and psychiatric disorders such as Parkinson's disease, migraines, chronic pain, and epilepsy. The proposed work is a novel technique for the production of high-end ultrasonic forces by interaction of gigahertz electromagnetic radiations for the purpose

The field of non-invasive neurostimulation techniques offer promising avenues for the treatment of various neurological and psychiatric disorders such as Parkinson's disease, migraines, chronic pain, and epilepsy. The proposed work is a novel technique for the production of high-end ultrasonic forces by interaction of gigahertz electromagnetic radiations for the purpose of neural modulation. These ultrasonic forces are created in dielectric materials such as cell membranes by the electrostrive effect, providing a potential new neurotherapeutic technique. The ability for this technique to provide neurostimulatory effects was investigated using in vitro studies of neuronal cultures and in vivo studies on sciatic nerves. Direct exposure of E18 rat cortical neurons to these EM radiations demonstrated changes in cellular membrane potential, suggesting effects could be potentially similar to direct electrical stimulation. An exploration of neuromodulatory effects to rat sciatic nerves indicates exposure produces changes to peak-to-peak muscular response. These findings suggest promising results for this new potential neuromodulation modality.
ContributorsDagher, Michael Jonathan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Towe, Bruce (Committee member) / Sridharan, Arati (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2023
154244-Thumbnail Image.png
Description
Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of

Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of conductivity reconstruction algorithms are suitable for isotropic conductivity distributions. However, tissues such as cardiac muscle and white matter in the brain are highly anisotropic. Until recently, the conductivity distributions of anisotropic samples were solved using isotropic conductivity reconstruction algorithms. First and second spatial derivatives of conductivity (∇σ and ∇2σ ) are integrated to obtain the conductivity distribution. Existing algorithms estimate a scalar conductivity instead of a tensor in anisotropic samples.

Accurate determination of the spatial distribution of a conductivity tensor in an anisotropic sample necessitates the development of anisotropic conductivity tensor image reconstruction techniques. Therefore, experimental studies investigating the effect of ∇2σ on degree of anisotropy is necessary. The purpose of the thesis is to compare the influence of ∇2σ on the degree of anisotropy under two different orthogonal current injection pairs.

The anisotropic property of tissues such as white matter is investigated by constructing stable TX-151 gel layer phantoms with varying degrees of anisotropy. MREIT and Diffusion Magnetic Resonance Imaging (DWI) experiments were conducted to probe the conductivity and diffusion properties of phantoms. MREIT involved current injection synchronized to a spin-echo pulse sequence. Similarities and differences in the divergence of the vector field of ∇σ (∇2σ) among anisotropic samples subjected to two different current injection pairs were studied. DWI of anisotropic phantoms involved the application of diffusion-weighted magnetic field gradients with a spin-echo pulse sequence. Eigenvalues and eigenvectors of diffusion tensors were compared to characterize diffusion properties of anisotropic phantoms.

The orientation of current injection electrode pair and degree of anisotropy influence the spatial distribution of ∇2σ. Anisotropy in conductivity is preserved in ∇2σ subjected to non-symmetric electric fields. Non-symmetry in electric field is observed in current injections parallel and perpendicular to the orientation of gel layers. The principal eigenvalue and eigenvector in the phantom with maximum anisotropy display diffusion anisotropy.
ContributorsAshok Kumar, Neeta (Author) / Sadleir, Rosalind J (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2015
154263-Thumbnail Image.png
Description
Tracking microscale targets in soft tissue using implantable probes is important in clinical applications such as neurosurgery, chemotherapy and in neurophysiological application such as brain monitoring. In most of these applications, such tracking is done with visual feedback involving some imaging modality that helps localization of the targets through images

Tracking microscale targets in soft tissue using implantable probes is important in clinical applications such as neurosurgery, chemotherapy and in neurophysiological application such as brain monitoring. In most of these applications, such tracking is done with visual feedback involving some imaging modality that helps localization of the targets through images that are co-registered with stereotaxic coordinates. However, there are applications in brain monitoring where precision targeting of microscale targets such as single neurons need to be done in the absence of such visual feedback. In all of the above mentioned applications, it is important to understand the dynamics of mechanical stress and strain induced by the movement of implantable, often microscale probes in soft viscoelastic tissue. Propagation of such stresses and strains induce inaccuracies in positioning if they are not adequately compensated. The aim of this research is to quantitatively assess (a) the lateral propagation of stress and (b) the spatio-temporal distribution of strain induced by the movement of microscale probes in soft viscoelastic tissue. Using agarose hydrogel and a silicone derivative as two different bench-top models of brain tissue, we measured stress propagation during movement of microscale probes using a sensitive load cell. We further used a solution of microscale beads and the silicone derivative to quantitatively map the strain fields using video microscopy. The above measurements were done under two different types of microelectrode movement – first, a unidirectional movement and second, a bidirectional (inch-worm like) movement both of 30 μm step-size with 3min inter-movement interval. Results indicate movements of microscale probes can induce significant stresses as far as 500 μm laterally from the location of the probe. Strain fields indicate significantly high levels of displacements (in the order of 100 μm) within 100 μm laterally from the surface of the probes. The above measurements will allow us to build precise mechanical models of soft tissue and compensators that will enhance the accuracy of tracking microscale targets in soft tissue.
ContributorsTalebianmoghaddam, Shahrzad (Author) / Muthuswamy, Jitendran (Thesis advisor) / Towe, Bruce (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2015
158383-Thumbnail Image.png
Description
Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability

Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability of the probe and its ability to acquire stable neural recordings in chronic studies. It has long been thought the membrane potential (MP) changes due to micromotion in the presence of brain implants were an artefact caused by the implant. Here is shown that intracellular membrane potential changes are a consequence of the activation of mechanosensitive ion channels at the neural interface. A combination of aplysia and rat animal models were used to show activation of mechanosensitive ion channels is occurring during a neural recording. During simulated micromotion of displacements of 50μm and 100μm at a frequency of 1 Hz, showed a change of 8 and 10mV respectively and that the addition of Ethylenediaminetetraacetic acid (EDTA) inhibited the membrane potential changes. The application of EDTA showed a 71% decrease in changes in membrane potential changes due to micromotion. Simulation of breathing using periodic motion of a probe in an Aplysia model showed that there were no membrane potential changes for <1.5kPa and action potentials were observed at >3.1kPa. Drug studies utilizing 5-HT showed an 80% reduction in membrane potentials. To validate the electrophysiological changes due to micromotion in a rat model, a double barrel pipette for simultaneous recording and drug delivery was designed, the drug delivery tip was recessed from the recording tip no greater than 50μm on average. The double barrel pipette using iontophoresis was used to deliver 30 μM of Gadolinium Chloride (Gd3+) into the microenvironment of the cell. Here is shown a significant reduction in membrane potential for n = 13 cells across 4 different rats tested using Gd3+. Membrane potential changes related to breathing and vascular pulsation were reduced between approximately 0.25-2.5 mV for both breathing and heart rate after the addition of Gd3+, a known mechanosensitive ion channel blocker.
ContributorsDuncan, Jonathan Leroy (Author) / Muthuswamy, Jitendran (Thesis advisor) / Greger, Bradley (Committee member) / Sridharan, Arati (Committee member) / Arizona State University (Publisher)
Created2020