Matching Items (4)
Filtering by

Clear all filters

156721-Thumbnail Image.png
Description
Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released

Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released by heterotrophic bacteria within the soil in the absence of O2. To better understand how neighboring bacterial communities can influence methanogenesis, the isolation and physiological characterization of two novel isolates, one Methanoarchaeal isolate and one Acidobacterium isolate identified as QU12MR and R28S, respectively, were targeted in this present study. Co-culture growth in varying temperatures of the QU12MR isolate paired with an isolated Clostridium species labeled R32Q and the R28S isolate were also investigated for possible influences in CH4 production. Phylogenetic analysis of strain QU12MR was observed as a member of genus Methanobacterium sharing 98% identity similar to M. arcticum strain M2 and 99% identity similar to M. uliginosum strain P2St. Phylogenetic analysis of strain R28S was associated with genus Acidicapsa from the phylum Acidobacteria, sharing 97% identity to A. acidisoli strain SK-11 and 96% identity similarity to Occallatibacter savannae strain A2-1c. Bacterial co-culture growth and archaeal CH4 production was present in the five temperature ranges tested. However, bacterial growth and archaeal CH4 production was less than what was observed in pure culture analysis after 21 days of incubation.
ContributorsRamirez, Zeni Elizia (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Roberson, Robert (Thesis advisor) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2018
156969-Thumbnail Image.png
Description
Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve hot spring systems. Additionally, field measurements of dissolved oxygen, ferrous iron, and total sulfide were combined with laboratory analyses of sulfate, nitrate, total ammonium, dissolved inorganic carbon, dissolved methane, dissolved hydrogen, and dissolved carbon monoxide were used to calculate the available energy from 58 potential metabolisms. Results were ranked to identify those that yield the most energy according to the geochemical conditions of each system. Of the 46 samples taken across twelve systems, all showed the greatest energy yields using oxygen as the main electron acceptor, followed by nitrate. On the other hand, ammonium or ammonia, depending on pH, showed the greatest energy yields as an electron donor, followed by H2S or HS-. While some sequenced taxa reflect potential biotic participants in the sulfur cycle of these hot spring systems, many sample locations that yield the most energy from ammonium/ammonia oxidation have low relative abundances of known ammonium/ammonia oxidizers, indicating potentially untapped sources of chemotrophic energy or perhaps poorly understood metabolic capabilities of cultured chemotrophs.
ContributorsRomero, Joseph Thomas (Author) / Shock, Everett L (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2018
171556-Thumbnail Image.png
Description
The biological carbon pump in the ocean is initiated by the photosynthetic fixation of atmospheric carbon dioxide into particulate or dissolved organic carbon by phytoplankton. A fraction of this organic matter sinks to depth mainly in the form of microaggregates (5-60 μm) and visible macroaggregates. These aggregates are composed of

The biological carbon pump in the ocean is initiated by the photosynthetic fixation of atmospheric carbon dioxide into particulate or dissolved organic carbon by phytoplankton. A fraction of this organic matter sinks to depth mainly in the form of microaggregates (5-60 μm) and visible macroaggregates. These aggregates are composed of cells, minerals, and other sources of organic carbon. Exopolymeric substances (EPS) are exudated by heterotrophic bacteria and phytoplankton and may form transparent exopolymeric particles (TEP) that act as a glue-like matrix for marine aggregates. Heterotrophic bacteria have been found to influence the aggregation of phytoplankton and in some cases result in an increase in TEP production, but it is unclear if marine heterotrophic bacteria can produce TEP and how they contribute to aggregation. Pseudoalteromonas carrageenovora, Vibrio thalassae, and Marinobacter adhaerens HP15 are heterotrophic marine bacteria that were found associated with sinking particles in an oligotrophic gyre station in the subtropical North Atlantic. These bacteria were grown in axenic cultures to determine growth, TEP production, and aggregation. They were also inoculated into roller tanks used to simulate open ocean conditions to determine their ability to form macroaggregates. Treatments with added kaolinite clay simulated aeolic dust input from the Sahara. M. adhaerens HP15 had the highest TEP concentration but the lowest cell-normalized TEP production at all growth stages compared to the other bacteria. Additionally, M. adhaerens HP15 also had the lowest microaggregate formation. The cell-normalized TEP production and microaggregate formation was not significantly different between P. carrageenovora and V. thalassae. All bacteria formed visible macroaggregates in roller tanks with clay addition and exhibited high sinking velocities (150-1200 m d-1) that are comparable to those of aggregates formed by large mineral ballasted phytoplankton. Microaggregates in the clay treatments declined during incubation, indicating that they aggregated to form the macroaggregates. The findings from this study show for the first time that heterotrophic bacteria can contribute to aggregation and the export of organic carbon to depth in the ocean.
ContributorsLivar, Britni (Author) / Neuer, Susanne (Thesis advisor) / Hartnett, Hilairy (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Arizona State University (Publisher)
Created2022
161754-Thumbnail Image.png
Description
Methanogens anaerobically metabolize simple carbon compounds coupled with an electron donor and produce methane in a process known as methanogenesis. While their importance in anoxic ecosystems and their greenhouse gas emissions are known, less is known about their diverse members. This is in part due to limited culture-dependent studies as

Methanogens anaerobically metabolize simple carbon compounds coupled with an electron donor and produce methane in a process known as methanogenesis. While their importance in anoxic ecosystems and their greenhouse gas emissions are known, less is known about their diverse members. This is in part due to limited culture-dependent studies as a consequence of the difficulty to culture and isolate them under laboratory conditions. Current methods in methanogen isolation require lengthy protocols, expensive equipment, can be easily contaminated, and even if a successful isolation is completed, traditional methods are biased towards only a few species of methanogens- leaving much of this community unsampled and thus unrepresented. New approaches in the isolation of methanogens need to be investigated in order to circumvent these obstacles. Here, I evaluated the effects of different strategies and alternative methods with the goal of increasing the diversity of recovered methanogens from Amazon peatlands as a study case. The results show that: a) through the use of different antibiotics the bacterial community makeup can be altered and lead to different methanogenic enrichments, some antibiotics reliably increase methanogenesis in all study sites, others only enhance it in some sites, while some have a low rate of methanogenesis enriching novel slow growers, b) the use of different substrates has less of an effect on methane production rates, however the complex substrate butyrate leads to consistent late stimulation, c) altering media components (reducing agent and overall geochemical background) for Amazon conditions would lead to a shorter time to isolation, d) and multiple methanogenic enrichments were achieved building on variable conditions and can lead to novel Amazon lineages. Molecular data is offering a more detailed view of bacteria and methanogens increasing or decreasing in response to treatments. Overall, it is shown that combining alternative approaches that manipulate interactions, metabolic substrate availability and culturing conditions could lead to more diverse isolation outputs from methanogenic cultures.
ContributorsAyers, Jillian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Shi, Yixin (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021